A Survey of Truth Discovery in Information Extraction

Xuan Wang, Yu Zhang and Yinyin Chen
04/26/2018

University of Illinois at Urbana-Champaign
Outline

Truth Discovery

Information Extraction

Truth Finding in Information Extraction
Truth Discovery
Iterative Methods

TruthFinder [Yin et al., 2008]

- Confidence of facts \Leftrightarrow Trustworthiness of web sites

Investment [Pasternack and Roth, 2010]

- Sources “invest” their reliabilities among claims, so that each candidate value v receives the votes:

\[
\text{vote}(v) = G \left(\sum_{s \in S_v} \frac{w_s}{|V_s|} \right)
\]

- Sources collects their credit back from the identified truths:

\[
w_s = \sum_{f \in V_s} \left(\text{vote}(v) \frac{w_s/|V_s|}{\sum_{s' \in S_v} w_{s'}/|V_{s'}|} \right).
\]
Graphical Model Based Methods

Latent Truth Model (LTM) [Wang et al., 2012]
- Categorical truths
- Inference: Collapsed Gibbs sampling

Gaussian Truth Model (GTM) [Zhao and Han, 2012]
- Numerical truths
- Inference: EM algorithm, Gibbs sampling
Comparison

Difference:
- Iterative methods are *simple and straightforward* in formulation, implementation, and interpretation.
- Graphical model based methods, as Bayesian methods, are able to incorporate *prior knowledge* and estimate the *statistical distributions*.

Similar internal mechanism, and a general procedure is summarized:

1. Start with initial source weights.
2. Repeatedly estimate the truth and source weights following the general principles:
 - sources with higher weights contribute more in estimating the truth;
 - sources providing more truth receive higher weights.
3. Stop until certain criterion is achieved.
Advanced Methods

- **Multi-source sensing model (MSS)** [Qi et al., 2013]
 - dealt with source dependency.
- **Regular EM** [Wang et al., 2012]
 - focused on the application of social sensing.
- **CopyCEF** [Dong et al., 2009]
 - for dynamic source discovery and copying relationship detecting.
- **Semi-Supervised Truth Discovery (SSTF)** [Yin and Tan, 2011]
 - is a semi-supervised truth finding.
Information Extraction
Information Extraction

Main Purpose

• Extract tuples in the form of \((\text{head entity}, \text{relation}, \text{tail entity})\), or \((e_h, r, e_t)\).

Sub-tasks

• Named Entity Recognition (NER)
• Relation Extraction (RE)
• Open-Domain Information Extraction (OpenIE)
Named Entity Recognition

Goal

- Discover token spans of certain types from a given corpus

Methods

- Fully-supervised
 - BiLSTM-CRF [Lample et al., 2016, Ma and Hovy, 2016]
- Weakly-supervised
 - label propagation [Talukdar and Pereira, 2010]
- Distantly-supervised
 - ClusType [Ren et al., 2015]
 - link entity mentions with a knowledge base and infer the types of unlinkable mentions
Relation Extraction

Goal

- Predict the relation between two detected entities

Methods

- Pattern-based
 - PATTY: tokens along the dep path [Nakashole et al., 2013]
- Distributional
 - TransE: entity and relation embeddings [Bordes et al., 2013]
- Hybrid
 - REPEL: co-training of two modules [Qu et al., 2018]
Open-Domain IE

Goal

- Directly extract tuples using linguistic features or sentence structures, without given types

Methods

- Pattern-based
 - MetaPAD: context-aware segmentation and synonymous pattern grouping [Jiang et al., 2017]

- Clause-based
 - ClausIE: clause type analysis based on dependency parse, chunks, and POS tags [Del Corro and Gemulla, 2013]

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Clause type</th>
<th>Example</th>
<th>Derived clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1:</td>
<td>SV</td>
<td>AE died.</td>
<td>(AE, died)</td>
</tr>
<tr>
<td>S_2:</td>
<td>SV$_c$A</td>
<td>AE remained in Princeton.</td>
<td>(AE, remained in Princeton)</td>
</tr>
<tr>
<td>S_3:</td>
<td>SV$_c$C</td>
<td>AE is smart.</td>
<td>(AE, is, smart)</td>
</tr>
<tr>
<td>S_4:</td>
<td>SV$_m$O</td>
<td>AE has won the Nobel Prize.</td>
<td>(AE, has won, the Nobel Prize)</td>
</tr>
<tr>
<td>S_5:</td>
<td>SV$_{dt}$O$_i$O</td>
<td>RSAS gave AE the Nobel Prize.</td>
<td>(RSAS, gave, AE, the Nobel Prize)</td>
</tr>
<tr>
<td>S_6:</td>
<td>SV$_{ct}$OA</td>
<td>The doorman showed AE to his office.</td>
<td>(The doorman, showed, AE, to his office)</td>
</tr>
<tr>
<td>S_7:</td>
<td>SV$_{ct}$OC</td>
<td>AE declared the meeting open.</td>
<td>(AE, declared, the meeting, open)</td>
</tr>
</tbody>
</table>
Truth Finding in Information Extraction
Truth Finding in Information Extraction

Data Source

- Unstructured data v.s. structured data
- Text data is more noisy.
- Text data brings more information, e.g., uncertainty, evidence.

Conflict Information

- Text corpora
- Information extractor
Truth Finding in Information Extraction

Attention Mechanism [Luo et al., 2017, Lin et al., 2016]

- Give a larger weight to specific part of the input in computing the final output.

Heterogeneous Supervision [Liu et al., 2017]

- Infer the truth label from heterogeneous supervision (e.g., knowledge base and domain knowledge).

Multi-dimensional Truth Discovery [Yu et al., 2014]

- Incorporate signals from multiple sources, multiple systems and multiple pieces of evidence.

Truth Existence in Truth Discovery [Zhi et al., 2015]

- True answers are excluded from the candidate answers provided by all sources.
Slot Filling Validation (SFV) task [Yu et al., 2014]

<table>
<thead>
<tr>
<th>System</th>
<th>Source</th>
<th>Slot Filler</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Agence France-Presse, News</td>
<td>Los Angeles</td>
<td>The statement was confirmed by publicist Maureen O’Connor, who said Dio died in Los Angeles.</td>
</tr>
<tr>
<td>B</td>
<td>New York Times, News</td>
<td>Los Angeles</td>
<td>Ronnie James Dio, a singer with the heavy-metal bands Rainbow, Black Sabbath and Dio, whose semioperatic vocal style and attachment to demonic imagery made him a mainstay of the genre, died on Sunday in Los Angeles.</td>
</tr>
<tr>
<td>C</td>
<td>Discussion Forum</td>
<td>Atlantic City</td>
<td>Dio revealed last summer that he was suffering from stomach cancer shortly after wrapping up a tour in Atlantic City.</td>
</tr>
<tr>
<td>D</td>
<td>Associated Press Worldstream, News</td>
<td>Los Angeles</td>
<td>LOS ANGELES 2010-05-16 20:31:18 UTC Ronnie James Dio, the metal god who replaced Ozzy Osbourne in Black Sabbath and later piloted the bands Heaven, Hell and Dio, has died, according to his wife and manager.</td>
</tr>
</tbody>
</table>

Table 1: Conflicting responses across different SF systems and different sources (query entity = *Ronnie James Dio*, slot type = *per:city_of_death*).
Multi-dimensional Truth Discovery

Multi-dimensional truth-finding model (MTM)
[Yu et al., 2014]

- Construct a heterogeneous information network for source, system and response.
- Initialize credibility score of the sources, system and response.
- Propagate the credibility scores through the heterogeneous network until converge, i.e. the change of response credibility is below a minimum threshold.

Figure 1: Heterogeneous networks for MTM.
Thank you for your attention!

Metapad: Meta pattern discovery from massive text corpora.
In *KDD’17*, pages 877–886. ACM.

Neural architectures for named entity recognition.

An attention-based bilstm-crf approach to document-level chemical named entity recognition.
Bioinformatics, 1:8.

End-to-end sequence labeling via bi-directional lstm-cnns-crf.

Clustype: Effective entity recognition and typing by relation phrase-based clustering.
In KDD’15, pages 995–1004. ACM.

Experiments in graph-based semi-supervised learning methods for class-instance acquisition.

Zhao, B. and Han, J. (2012).
A probabilistic model for estimating real-valued truth from conflicting sources.
QDB’12.

Zhi, S., Zhao, B., Tong, W., Gao, J., Yu, D., Ji, H., and Han, J. (2015).
Modeling truth existence in truth discovery.
In *KDD’15*, pages 1543–1552. ACM.