Survey of Distributed Mining of Information Network

Luke Leslie, Mayank Pundir, Yosub Shin

CS512 Spring 2015 Survey Presentation
Agendas

• Centralized HIN Data Mining algorithms
• MapReduce based Graph Mining
• Distributed Graph Processing Frameworks
• Distributed Graph Dataflow Frameworks (GraphX)
• Partitioning Distributed Graphs
Motivation

• Today’s information networks can have > 1M vertices, > 1B edges
 • DBLP >1.8M papers
 • Facebook > 100M users
 • World Wide Web > 3B nodes

• Scalable computation has been studied only for homogeneous information networks

• Scalable computation on HIN is necessary
Background

- (Distributed) Homogeneous Information Networks Algorithms
 - e.g. PageRank, K-means, SimRank

- (Centralized) Heterogeneous Information Networks Algorithms
 - e.g. RankClus [Sun et. al. EDBT 2009], GNetMine [Ji et. al. ECMLPKDD 2010], RankClass [Ji et. al. SIGKDD 2011], TruthFinder [Yin et. al. TKDE 2008]
Examples of MapReduce graph mining algorithms:

- PageRank on MapReduce
 [Dean et al. OSDI 2004]

- Personalized PageRank on MapReduce
 [Bahamani et al. SIGMOD 2011]

- Graph Algorithms using Filtering with MapReduce
 [Lattanzi et al. SPAA 2011]

- K-means Algorithm on MapReduce
 [Zhao et al. CLOUD 2009]

- Triangle Count on MapReduce
 [Suri et al. WWW 2011]
What is MapReduce?

- Programming model for processing large data in a distributed manner.
- Map: Takes scattered data, generate key-value pairs.
- Reduce: Takes values grouped by key, and aggregates data.

PageRank implemented in MapReduce.
Efficient Design Patterns for MapReduce based Graph Mining

- Inefficiencies in MapReduce:
 - Costs associated with materializing intermediate key-value pairs when using combiners.
 - Costs associated with shuffling the graph structure from the mappers to the reducers.
 - Costs associated with topology-oblivious hash partitioning of vertices.

- Approaches proposed by [Lin et al. MLG 2010]
 - In-Mapper Combining: Try to combine in local machine
 - Schimmy: Parallel merge-join intermediate key-value pairs
 - Range Partitioning: Co-partition adjacent vertices(partition by URL)
Limitations of MapReduce based Graph Mining

- Limited to homogeneous networks

- MapReduce not good for graph processing:
 - Some graph processing algorithm impossible to implement in MapReduce. e.g. gradient descent
 - Shuffle phase incurs unnecessary overhead
 - Implementing graph algorithms unintuitive vs. Gather-Apply-Scatter
Distributed Graph Processing Frameworks

1. Gather - Each vertex collects val. from incoming neighbors
2. Apply - Each vertex processes val. received in ‘Gather’ phase
3. Scatter - Each vertex propagates output of ‘Apply’ to neighbors

Pregel[Malewicz et al. SIGMOD 2010]
Graph Applications using GAS

- Examples of GAS algorithms:
 - PageRank
 - SimRank
 - Personalized PageRank
 - K-means
 - Triangle Count

PageRank implemented in GAS
[Becchetti et al. TKDD 2010]

PageRank implemented in GAS
[Gonzalez et al. OSDI 2014]
Distributed Graph Processing Frameworks

Graph Processing Framework Classification

• Out-neighbor maintaining frameworks
 • Pregel [Malewicz et al. SIGMOD 2010], Giraph [giraph.apache.org], Hama [Seo et al. CloudCom 2010]

• In-neighbor maintaining frameworks
 • LFGraph [Hoque et al. TRIOS 2013]

• In- and out- neighbor maintaining frameworks
 • PowerGraph [Gonzalez et al. OSDI 2012], Distributed GraphLab [Low et al. VLDB 2012],
 GraphLab [Low et al. UAI 2010]
Limitations of Distributed Graph Processing Algorithms

- Assumes homogeneous vertices and edges
- Unable to exploit link restrictions b/w vertices of diff. types
- Only simple graph algorithms are shipped with the frameworks, and no complex algorithms available

- e.g. SCAN [Xu et al. SIGKDD 2007], Modularity-Based Clustering [Clauset et al. Physical Review E 2004]
• Having separate systems for each view is difficult to use and inefficient
GraphX

- Built on top of Spark (data analytics framework)
- Great flexibility in constructing / processing graph
- A graph is defined as: \(G = \{V, E, P_V, P_E\} \)
- Property graph represented in RDD (Resilient Distributed Datasets)
- RDD: In-memory, read-only collection of objects constructed from disk, or other RDD

- Lineage: fault tolerance, extremely efficient
Distributed Graph Dataflow Framework

Distributed Graph Representation in GraphX

- Edges partitioned in partitioning func.,
- Vertices partitioned in vertex id (Routing table copartitioned)
- Subgraphs are expressed by bit masks
GraphX Algorithms

Data: Initialized graph
\[\text{Pregel}(\text{pagerankGraph, initialMessage})\]
\[\text{vertexProgram, sendMessage, messageCombiner}\]

```python
def vertexProgram(id, attr, msgSum):
    Data: vertex id, vertex property, and the aggregated message
    Result: Updated vertex property according to the apply phase of GAS
    (oldPR, lastDelta) ← attr
    val newPR ← oldPR + 0.85 * msgSum
    return (newPR, newPR − oldPR)
```

```python
def sendMessage(edge):
    Data: An edge triplet
    Result: Check for the convergence, and send authority to destination vertex
    if edge.srcAttr..2 > tolerance then
        return
        Iterator((edge.dstId, edge.srcAttr..2*edge.attr))
    else
        return Iterator.empty
end
```

```python
def messageCombiner(a, b):
    Data: Two messages destined to same vertex
    Result: The aggregated value
    return a + b
```

PageRank implemented in GraphX [Gonzalez et al. OSDI 2014]
Limitations of Distributed Graph Dataflow Framework

- Heavyweight
- Only simple graph algorithms are shipped with the frameworks, and no complex algorithms available
- Implementing HIN algorithms is not trivial and can lead to inefficiency
Partitioning Distributed Graphs

• Partitioning in homogeneous networks
 • METIS [Karypis et al. IPPS 1996]

• Partitioning homo. networks in distributed systems
 • GraphLab, PowerGraph: Vertex cut, partitioning heuristics
 • LFGraph: Fast(non-intelligent) hash based partitioning

• Partitioning streaming homo. networks
 • Greedy heuristics (hashing, chunking, edge count, triangle count, modularity) [Stanton et al. KDD 2012], FENNEL greedy vertex assignment [Tsourakakis et al. WSDM 2014]
METIS [Karypis et al. IPPS 1996]

Coarsening Phase: Run maximal edge matching; Merge matched vertices

Partitioning Phase: Partition with coarsened graph (cheaper)

Uncoarsening Phase: Restore original graph

How to coarsen a graph using a maximal matching

$G = (N, E)$

E_S is shown in red

Edge weights shown in blue

Node weights are all one

$G_c = (N_c, E_c)$

N_S is shown in red

Edge weights shown in blue

Node weights shown in black
Partitioning Streaming Graph Algorithm

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>BFS</th>
<th>DFS</th>
<th>Random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid Big</td>
<td>AB</td>
<td>-27.3</td>
<td>-38.6</td>
</tr>
<tr>
<td>Balanced</td>
<td>B</td>
<td>-1.5</td>
<td>-1.3</td>
</tr>
<tr>
<td>Prefer Big</td>
<td>PB</td>
<td>-9.5</td>
<td>-18.6</td>
</tr>
<tr>
<td>Chunking</td>
<td>C</td>
<td>37.6</td>
<td>35.7</td>
</tr>
<tr>
<td>Deterministic Greedy</td>
<td>DG</td>
<td>57.7</td>
<td>54.7</td>
</tr>
<tr>
<td>Exp. Det. Greedy</td>
<td>EDG</td>
<td>59.4</td>
<td>56.2</td>
</tr>
<tr>
<td>Exp. Rand. Greedy</td>
<td>ERG</td>
<td>45.6</td>
<td>45.6</td>
</tr>
<tr>
<td>Exp. Triangles</td>
<td>ET</td>
<td>50.7</td>
<td>49.3</td>
</tr>
<tr>
<td>Greedy EvoCut</td>
<td>GE</td>
<td>60.3</td>
<td>58.6</td>
</tr>
<tr>
<td>Hashing</td>
<td>H</td>
<td>-1.9</td>
<td>-2.1</td>
</tr>
<tr>
<td>Linear Det. Greedy</td>
<td>LDG</td>
<td>76</td>
<td>73</td>
</tr>
<tr>
<td>Linear Rand. Greedy</td>
<td>LRG</td>
<td>46.4</td>
<td>44.9</td>
</tr>
<tr>
<td>Linear Triangles</td>
<td>LT</td>
<td>55.4</td>
<td>54.6</td>
</tr>
<tr>
<td>Randomized Greedy</td>
<td>RG</td>
<td>45.5</td>
<td>44.9</td>
</tr>
<tr>
<td>Balance Big</td>
<td>BB</td>
<td>67.8</td>
<td>68.5</td>
</tr>
<tr>
<td>Triangles</td>
<td>T</td>
<td>49.7</td>
<td>48.4</td>
</tr>
</tbody>
</table>

Average gain of each heuristic over Random partitioning

Heuristic performance of BFS over Watts-Strogatz Graphs

Streaming Graph Partitioning for Large Distributed Graphs [Stanton et al. KDD 2012]

Limitations of Existing Graph Partitioning Methods

- Don’t consider heterogeneous nature of networks
 - Placing certain vertex, edge types in same partition may benefit a mining algorithm
 - Splitting meta-paths using weak links may provide natural means to partition the data
Summary

• Centralized HIN Data Mining algorithms
 • RankClus, GNetMine, RankClass, TruthFinder

• MapReduce based Graph Mining
 • PageRank, Personalized PageRank, Filtering, K-means

• Distributed Graph Processing Frameworks
 • Gather-Apply-Scatter algorithm (Pregel)

• Distributed Dataflow Frameworks
 • GraphX: Built on Spark, RDD, Fault tolerance using Lineage

• Partitioning Distributed Graphs
 • METIS (homogeneous), Greedy heuristics, FENNEL (streaming homogeneous)
References (1/2)

References

[42] X. Yin, J. Han, and P. S. Yu. Truth Discovery with Multiple Conflicting Information Providers on the Web. In IEEE Transactions on Knowledge and Data Engineering. IEEE, 2008.

Thank you!