Limiting the Spread of Misinformation in Social Networks

By C. Budak, D. Agrawal and A. Al Abbadi
Department of Computer Science - UCSB
Article published in KDD10

Presented in CS512 by G. Pitois - 4/06/2011
Introduction

- Information spreads in Social Networks
 - TV, newspaper, web (Facebook, email)
- Information and Misinformation are competing
- How to limit the influence of Misinformation?
- Plan:
 - Modeling the spread of information in Social Networks
 - The Eventual Influence Limitation (EIL) problem
 - Experimentation on real data from Facebook
Spread of Information - 1

- Social Networks
 - Can be modeled as a (directed) graph $G = (N, V)$

- Independent Cascade
 - Time is modeled by a succession of steps
 - At each step t, a set of nodes are activated
 - An active node v has a chance to activate its neighbours w with a probability $p_{v,w}$ for step $t+1$
Spread of Information - 2

Cascade of information
Spread of Information - 3

- Two Diffusion Models are used:
 - Multi-Campaign Independent Cascade (MCICM)
 - Campaign C (bad information), origin from node n_a (adversary node)
 - Limiting Campaign L starts with delay r
 - Campaign have independent probabilities of diffusion
 - Campaign-Oblivious Independent Cascade (COICM)
 - Probability of diffusion is independent of the campaign
 - Good model when both campaigns have similar quality of information
Spread of Information - 4

Multi-Cascade Independent Cascade Model (MCICM)

Probability of diffusion on each edge depends on the campaign

Campaign L
Starts with delay r
Spread of Information - 5

Probability of diffusion on each edge is independent of the campaign

Campaign-Oblivious Independent Cascade Model (COICM)
Eventual Influence Limitation (EIL) - 1

- Characteristics of the EIL problem
 - Minimize the number of nodes that would be infected by (bad) campaign C
 - Assume campaign C starts from a single node n_a
 - Determine an optimal set A_L of k nodes to start the limiting campaign L
 - NP-Hard problem 😞
Eventual Influence Limitation (EIL) - 2

MCICM with High efficiency

k=2
Eventual Influence Limitation (EIL) - 3

- Solutions to the EIL problem
 - Greedy algorithm
 - Too expensive for real social networks
 - Degree centrality
 - Target “influential people”
 - Do not consider if node may be infected
 - Early infectees
 - Choose nodes supposed to be infected at step r (delay time)
 - Largest infectees
 - Choose nodes that would infect the highest number if they were infected themselves
Experimentation

• Data sets
 • Regional networks from Facebook
 • SB2008: 13,000 nodes 184,000 edges
 • SB2009: 26,000 nodes 453,000 edges
 • Some others…

• Parameters
 • Degree of centrality of adversary node (n_a)
 • Delay r of limiting campaign L
 • Weight distribution of probabilities for C and L
SB 2008 - Multi-Campaign Independent Model with high efficiency
Results - 2

(a) $\text{delay} = 20\%$

(b) $\text{delay} = 70\%$

(c) $\text{delay} = 20\%, \text{adversary degree} \geq 40$

SB 2008 – Campaign-Oblivious Independent Model
Results - 3

- After running tests on the two models
 - MCICM (Multi-Campaign)
 - COICM (Campaign-Oblivious)

- Delay is very important

- Early infectees is unstable

- Largest infectees compare to greedy method

- To select the best method, consider:
 - Delay
 - Connectedness of adversary node (n_a)
Conclusion

- EIL problem is NP-Hard
- Heuristics can compare to greedy approach

Future work
- Parallel algorithm for computing saved nodes
- Minimize budget k (initial size of L campaign)
- Possibility for a node to change its mind

- Thank you for your attention!!