Current sensing techniques are used in feedback for dc-dc converters photovoltaic (PV) systems. Different sensing techniques are investigated for their cost and power consumption. This is particularly important for smaller power module converters to increase:

- Affordability
- Energy efficiency

Question: Which current sensing technique minimizes power loss and cost, while meeting control requirements for specific size PV module?

Technique: Hall effect sensor is a transducer that produces a voltage in response to a magnetic field. A current I flows through a thin sheet of conductive material that is penetrated by a magnetic flux density B, and voltage is generated perpendicular to both current and field [1] .

Advantage:
- Isolation between current path and logic
- Low power consumption

Disadvantage:
- Significant thermal drift
- Need additional circuitry to compensate the voltage offset
- Relatively high cost

Types:
- open-loop
- closed-loop
- active current probes.

Power Consumption:

The supply voltage ranges from 2 V to 6 V and the supply current ranges from 8 mA - 10 mA, which results in low power consumption at the mW scale.

Cost:

Hall Effect sensor cost is more expensive.

- Chip: $4 to $7
- Through-hole: $20 to $50 [3]

This work is supported by Rockwell Collins through the Promoting Undergraduate Research in Engineering (PURE) program at the University of Illinois

Selected References

