The Horror of the Presentation

- Secret Footage of Speaking Helter-Skelter...

- Horror Stories from the Past
 - Think back to the last presentation or public speaking engagement you were involved with. What made it difficult, and how did you cope?
The Presentation (Before)

- The presentation **starts well before the day of**:
 - Identify and analyze your audience: A big part of targeting groups is to put a specific, and unique touch on your presentation. Ask yourself, what will this particular group understand and how can you catch its interest?
 - Audience typically mostly undergraduates, but graduate students and professors also attend.

- **Repeat** 2-3 take-away key points:
 - Say/show once in beginning, in middle, and in end
 - Research motivation, Value of your results

- Determine the best representation of your ideas:
 - Where do figures explain key points most effectively? What level of detail would your audience benefit most from?
 - Each slide should have a specific purpose
Why do we present our research?

- Excite and convince the academic community of students and faculty on current findings

- Share an idea outside the research group, encourage collaboration, and get funding!

- Practice giving these presentations improves your own public speaking and preparation skills – which is the experience **you will** need for life. 😊
Why is your topic important?

- Explain background at ECE 110 level
 - What motivates your field of research
 - Why does the world need your results?

- Technical clarity is a necessity
 - Analogies are helpful but use simple language

- You should be prepared to talk in detail about:
 - The current problems being tackled
 - Your interesting problem-solving experiences
 - The results of your work
 - How do your results apply to the real world? How do they compare to other solutions?
How to convey scholarly work?

- State the problem and past findings
- Make a picture (best way to fit 1000 words)
- Label all plots and equations with large text
 - Equations: simple, most important equations *only* (e.g. heat equation)
 - Plots: example
- Practice makes perfect
 - Group meetings, mentor-mentee meetings
 - Rehearse presentation with someone or by yourself
How to convey scholarly work?

- State the problem and past findings
- Make a picture (best way to fit 1000 words)
- Label all plots and equations with large text
 - Equations: simple, most important equations
 (e.g. heat equation)
 - Plots: example
- Practice makes perfect
 - Group meetings, mentor-mentee meetings
 - Rehearse presentation with someone or by yourself

Evidence of Multi-Band Transport from Gate Voltage Dependence

\[I_D (\mu A) \]

\[V_{DS} (V) \]

\[V_{GS} = -50V, -40V, -30V, -20V \]

\[D \sim 2.5 \text{ nm} \]

\[L \sim 1.3 \text{ \mu m} \]

A. Liao et al., DRC (2008)
Hysteresis Reduction and Breakdown of Carbon Nanotube Field-Effect Transistors (CNTFETs)

S. Dutta1, A. Liao1, D. Estrada1, E. Pop1

1. Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801

December 2, 2008
Outline

• Motivation
 – Nanoelectronics: scale down transistor size and reduce power consumption
 – Carbon Nanotubes and Carbon Nanotube Field Effect Transistors (CNTFETs)

• Electrical Characterization of CNTFETs
 – Pulsed I-V characterization
 – Joule heating breakdown

Moore’s Law
Carbon Nanotubes

• Carbon nanotubes (CNTs) are 1D tubes of hexagonally arranged carbon atoms

• CNTs feature extraordinary electrical conductivity (~10 times Cu/Ag) and thermal conductivity (similar to C_{diamond})

• Less heat dissipation \rightarrow closely packed transistors \rightarrow satisfy Moore’s law

Diamond (top left), graphite (bottom left), & SWNT (right) structural comparison
The Presentation (During)

- Arrive comfortable and prepared:
 - Arrive on time, well dressed, and ready to present
 - For group presentations, know who is presenting what

- Make it memorable
 - Note your audience’s demographic, and interact as necessary
 - Use visual examples; avoid expletives

- Stay within the time limit
 - 5 minutes per person; up to 5 minutes for questions
 - Some detail may have to be cut out
The Presentation (After)

- Entertain all questions and don’t argue with the questioner. Repeat the question so everyone hears it.

- The question and answer session is your last chance to teach and learn from your audience.

- Acknowledge your mentor and advisor, and anyone else who helped you along the way.

- Make sure you finish within the allotted time and thank the audience.
Key Points

- **Where to start?**
 - Pick 2-3 key points

- **During the presentation**
 - Motivate your topic with relatable examples
 - Revisit those 2-3 key points in the introduction, body, and conclusion

- **Use visuals to convey your point**
 - Clearly labeled figures
 - Introduce equations in moderation
Acknowledgements

- Professor S. Lance Cooper, PHYS 496 author of Effective Scientific Presentations and Tips for Using PowerPoint
- Celia Elliot, PHYS 496 instructor
- David Hertzog, PHYS 496 creator
- T. J. Dolan, NPRE 421 Technical Presentations talk
Follow-up

- Use the department’s PowerPoint template

- PURE Archive contains past presentations

- ECE Undergraduate Research Symposium (April 14, 21, and 28)

- You are welcome to share examples

- Find this presentation on PURE website; feedback and future volunteers appreciated