DPClass: Effective but Concise Discriminative Patterns-Based Classification

Jingbo Shang, Wenzhu Tong, Jian Peng, Jiawei Han
Outline

- Motivation: Why Discriminative Patterns based?
- DPClass: Methodology
- Experimental Results
- Discussion and Future Work
Why Discriminative Patterns based?

- Single Feature v.s. Combinations of Features
 - A single feature sometimes means nothing.
 - Combinations of Features are more meaningful.
 - Example: Xor Problem, which is **not linear separable** using single features.
- Mining semantically meaningful patterns
 - Construct **high-order** interactions in features
 - **Compress** the predictive model
Classification: Why Not Use Tree-based Models?

- Single Tree Models
 - e.g. Decision Tree/Boosted Tree
 - Sensitive to training instances \(\rightarrow \) Overfitting

- Multiple Trees Models
 - e.g. Random Forest
 - Tree-independent: the growth & traditional pruning strategies
 - Model size could be very large \(\rightarrow \) Slow online prediction
 - Uninterpretable
Classification: Why Not Use PatClass/DDPMine?

- Frequent Patterns v.s. Discriminative Patterns
 - Frequent doesn’t imply discriminative
 - The number of frequent patterns might be very large
 - → a large but useless pool of frequent patterns
Outline

- Motivation: Why Discriminative Patterns based?
- DPClass: Methodology
- Experimental Results
- Discussion and Future Work
DPClass: Compatible Discriminative Patterns for Linear Models

![Diagram showing DPClass process]

- **Training Dataset**
 - Discriminative Patterns Generation
 - Multiple Tree-based Model

- **Testing Dataset**
 - Efficient Testing

- **Compressed Model**
 - Linear Model Training
 - Top-k Discriminative Patterns

Possible discriminative patterns:
- A non-leaf node & a discriminate pattern
- A selected discriminative pattern
- A non-selected discriminative pattern

Equation

\[0.8 + 0.5 \times b - 1 \times g + 2.1 \times f - 0.7 \times j \]
What Kind of Patterns Are of Discriminative?

- Strong signals on the specific classification task
 - E.g. A pattern with very high information gain
What Kind of Patterns Are of Top-k Patterns?

- Some effects of different patterns may have a large portion of overlaps, e.g. $(v_0 \cap v_1 \cap v_2)$ and $(v_0 \cap v_1 \cap v_2 \cap v_3)$

- A set of patterns is compatible \triangleq They have strong signals on the specific classification task and every single pattern has its own “significant” contributions.

Definition 4. *Top-k Patterns* is a size-k subset of discriminative patterns, which have the best performance, which is the accuracy in classification tasks, based on the training data.
DPClass I: The Specific Task

- We discuss binary classification here
- \(N \) training instances \((x_1, y_1), (x_2, y_2) \ldots (x_N, y_N)\)
- \(\forall 1 \leq i \leq N, y_i \in \{+1, -1\} \)
- \(x_i \) is the feature vector of \(i \)-th instance
 - Both numeric (continuous) and categorical (discrete) variables are acceptable
DPClass II: Discriminative Patterns Generation

- Random Forest
 - Maximize the randomness
 - Random features
 - Random partitions
 - Random instances (bootstrap)
DPClass II: Discriminative Patterns Generation

- **Parameters**
 - # of trees = T
 - loss function = information gain
 - depth $\leq d$
 - support $\geq \sigma$ (based on bootstrapped instances)

- We admit all prefix of these tree-paths as patterns
 - # of leaves $\leq \min \left\{ 2^d, \frac{N}{\sigma} \right\} \cdot T$
 - # of candidate patterns $\leq \min \left\{ 2^d, \frac{N}{\sigma} \right\} \cdot T \cdot d$

- Assume $T = 100$, # of candidate pattern $\sim 10^4$
DPClass III: Compatible Discriminative Patterns Selection

- Select a k-set of most compatible discriminative patterns

- Implementation
 - Forward Selection (Greedy)
 - LASSO (GLMNET)
Outline

- Motivation: Why Discriminative Patterns based?
- DPClass: Methodology
- Experimental Results
- Discussion and Future Work
Experiments: Synthetic Experiment

- For each patient, we have several uniformly sampled features as the following.
 - Age (A). Positive Integers no more than than 60.
 - Gender (G). Male or Female.
 - Lab Test 1 (LT1). Categorical values from (A, B, O, AB).
 - Lab Test 2 (LT2). Continuous values in [0..1].
- The positive label of the hypothesis disease will be given when at least one of the following rules holds.
 - (age > 18) and (gender = Male) and (LT1 = AB) and (LT2 ≥ 0.6)
 - (age > 18) and (gender = Female) and (LT1 = O) and (LT2 ≥ 0.5)
 - (age ≤ 18) and (LT2 ≥ 0.9)
Experiments: Synthetic Experiment

- 10^5 random patients in train (0.1% noise), 5×10^4 random patients in test
- 99.99% Accuracy
- Top-3 Patterns:
 - (age > 18) and (gender = Female) and (LT1 = O) and (LT2 ≥ 0.496)
 - (age ≤ 18) and (LT2 ≥ 0.900)
 - (age > 18) and (gender = Male) and (LT1 = AB) and (LT2 ≥ 0.601)
Experiments: Compare to DDPMine

- Top-20 Compatible Discriminative Patterns

Table 1: Test Accuracy on UCI Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>DPClass-F</th>
<th>DPClass-L</th>
<th>DDPMine</th>
</tr>
</thead>
<tbody>
<tr>
<td>adult</td>
<td>85.66%</td>
<td>84.33%</td>
<td>84.82%</td>
</tr>
<tr>
<td>crx</td>
<td>85.38%</td>
<td>83.49%</td>
<td>84.93%</td>
</tr>
<tr>
<td>hypo</td>
<td>99.58%</td>
<td>99.28%</td>
<td>99.24%</td>
</tr>
<tr>
<td>sick</td>
<td>98.35%</td>
<td>98.87%</td>
<td>98.36%</td>
</tr>
</tbody>
</table>
Experiments: Train/Test Accuracy v.s. top-K

Figure 2: The impact of top-k patterns in DPClass-Forward.
Experiments: TODO

- Larger and newer datasets
Outline

- Motivation: Why Discriminative Patterns based?
- DPClass: Methodology
- Experimental Results
- Discussion and Future Work
Conclusions

- DPClass can compress the model and thus the online prediction is extremely fast
- DPClass have comparable performance as before
 - Even better in experiments
- DPClass can learn the interpretable patterns
 - Shown in the synthetic experiment
Future Work

- Extend DPClass to DPLearn
- Task Oriented Discriminate Patterns Learning
 - Classification
 - Multi-class classification
 - Regression
 - Survival Analysis