Knowing What to Believe and Who to Trust in the Presence of Conflicting Information

Jeff Pasternack and Dan Roth
University of Illinois at Urbana-Champaign
Introduction

- The advent of the Information Age and the Web
 - Overwhelming quantity of information
 - But uncertain quality:
 - Collaborative media
 - Blogs
 - Wikis
 - Message boards
 - Established media are losing market share
 - Reduced fact-checking
 - Information extraction tells us what a document says
 - But what do we believe?
Introduction

- Too many documents from too many sources
- Not feasible for a human to read them all
- A computational trust system can be our proxy
 - Ideally assign the same trust judgments the user would
- The user may be another system
 - A question answering system
 - A navigation system
 - Etc.
Overview

- Applying prior knowledge to fact-finders
 - Motivation
 - Fact-finders
 - A brief introduction to (integer) linear programming
 - Encoding prior knowledge as linear constraints
 - And enforcing it with a polynomial-time linear program
 - Results and discussion

- Current work
 - Constrained learning via linear programming
 - Enhanced fact-finding

- Future concerns and directions
Applying Prior Knowledge to Fact-Finders
Motivation

- Problem: Information sources assert conflicting claims
- Fact-finders evaluate a bipartite network of information sources and the claims they make
 - Determine which sources are trustworthy
 - And which claims are believable
 - Sources with believable claims are more trustworthy
 - Claims with trustworthy sources are more believable
 - E.g. TruthFinder (Yin, Han & Yu, 2008)
- Usually work much better than voting
 - But seek a global, objective “ground truth”
 - And can’t take advantage of prior knowledge
Applying Prior Knowledge to Fact-Finders

Motivation

- Truth is subjective
 - Opinions (“this restaurant is good”)
 - Facts (“man landed on the moon”)
- User’s prior knowledge biases what we should believe
 - User A believes that man landed on the moon
 - User B believes the moon landing was faked
 - Different belief in the claim “there is a mirror on the moon”
- Common-sense
 \[\neg ManOnMoon \Rightarrow \neg MirrorOnMoon \]
- How do we apply this prior knowledge efficiently?
 - Linear programming
Applying Prior Knowledge to Fact-Finders

Motivation: Deception

"...HOLD STILL, LARRY. IT'S TAKING ANOTHER PICTURE..."
Applying Prior Knowledge to Fact-Finders

Fact-Finders: Introduction

- Fact-finders evaluate a bipartite heterogeneous information of network sources and the claims they make
 - Sources with believable claims are more trustworthy
 - Claims with trustworthy sources are more believable
 - E.g. TruthFinder (Yin, Han & Yu, 2008)

- Usually work much better than voting
 - But seek a global, objective “ground truth”
 - And can’t take advantage of prior knowledge
Applying Prior Knowledge to Fact-Finders
Fact-Finders: Graphical Representation

Information sources S

- s_1
- s_2
- s_3
- s_4

Claims C

- c_1
- c_2
- c_3
- c_4
- c_5

Mutual exclusion sets

- M_1
- M_2

Bipartite information network

Each source $s \in S$ asserts a set of claims $C_s \subseteq C$

Each claim $c \in C$ belongs to a mutual exclusion set $M_c \subseteq C$

(Graph adapted from a slide by Jiawei Han)
Applying Prior Knowledge to Fact-Finders

Fact-Finders: General Algorithm

Iterate:

- Calculate trust in each source $T^i(s)$ at iteration i in terms of the belief in its claims in the previous iteration, $B^{i-1}(C_s)$
- Calculate belief in each claim $B^i(c)$ in terms of $T^i(S_c)$

 $S_c = \{ s : s \in S, c \in C_s \}$
- Finish on specific number of iterations, or stop criteria

Various possible belief priors

- $B^0_{voted}(c) = \frac{|S_c|}{\sum_{d \in M_c} |S_d|}$
- $B^0_{uniform}(c) = |M_c|^{-1}$
- $B^0_{fixed}(c) = 0.5$
Applying Prior Knowledge to Fact-Finders

Fact-Finders: Analogy to Hubs and Authorities

- Claims ↔ authorities, information sources ↔ hubs

Also know as Hyperlink-Induced Topic Search (HITS)

Can be adapted as a fact-finder (we call it Sums):

- \[T^i(s) = \sum_{c \in Cs} B^{i-1}(c) \]
 Trustworthiness of source = sum of belief in its claims

- \[B^i(c) = \sum_{s \in Sc} T^i(s) \]
 Belief in claim = sum of belief in its sources

(Adapted from a slide by Jiawei Han)
Applying Prior Knowledge to Fact-Finders

Fact-Finders: Existing Algorithms

- **TruthFinder (Yin, Han & Yu, 2008)**
 - Simplified version—see paper for complete version
 - \[T^i(s) = \sum_{c \in C_s} B^{i-1}(c) / |C_s| \]
 Mean probability of claims
 - \[B^i(c) = 1 - \prod_{s \in S_c} (1 - T^i(s)) \]
 1 – P(all sources are wrong)

- **3-Estimates (Galland et al., 2010)**
 - Based on summation
 - Extends the typical model by adding a third set of parameters
 - These capture the “difficulty” of a claim
 - Some truths are harder to discern than others
 - \(1 + 1 = 2 \)
 - \(P =? NP \)
Applying Prior Knowledge to Fact-Finders

Our Contribution

- Next, we present three novel fact-finders
- Then, we’ll introduce our framework for incorporating prior knowledge into any fact-finder
Applying Prior Knowledge to Fact-Finders

Fact-Finders: Novel Algorithm #1

- **Average·Log**
 - \(T^i(s) = \log |C_s| \cdot \sum_{c \in C_s} B^{i-1}(c)/|C_s| \)
 - \(B^i(c) = \sum_{s \in Sc} T^i(s) \)

\(\log(#\text{claims}) \cdot \text{mean belief} \)

\(\text{sum trust in sources} \)
Investment

- Sources "invest" trustworthiness uniformly among their claims
- Belief in each claim grows according to a non-linear function G
- Source trustworthiness is sum of belief in its claims, weighted by its relative investment in each
- We use $G(x) = x^g$, with $g = 1.2$

\[T^i(s) = \sum_{c \in C_s} B^{i-1}(c) \cdot \frac{T^{i-1}(s)}{|C_s|} \cdot \sum_{r \in S_c} \frac{T^{i-1}(r)}{|C_r|} \]

\[B^i(c) = G \left(\sum_{s \in S_c} \frac{T^i(s)}{|C_s|} \right) \]

Proportion of total "investment" in c provided by s at time $i-1$

Each source "invests" uniformly among all its claims
Applying Prior Knowledge to Fact-Finders
Fact-Finders: Novel Algorithm #3

- **Pooled Investment**
 - Similar to Investment
 - Sources invest trustworthiness uniformly among their claims
 - $T^i(s)$ remains the same
 - Difference: claims in each M are linearly scaled so their sum remains the same after being grown by G
 - We use $G = x^{1.4}$

$$H^i(c) = \sum_{s \in S_c} \frac{T^i(s)}{|C_s|}$$
Investment in claim c

$$B^i(c) = H^i(c) \cdot \frac{G(H^i(c))}{\sum_{d \in M_c} G(H^i(d))}$$
Normalize belief in c
(Integer) Linear Programming
A One-Slide Introduction

Given variables $x_1, x_2, x_3, \ldots x_n$

With constraints $i = 1 \ldots m$

of the form $a_{i,1}x_1 + a_{i,2}x_2 + a_{i,3}x_3 + \ldots a_{i,n}x_n \geq b_i$

Minimize cost $w_1x_1 + w_2x_2 + w_3x_3 + \ldots w_nx_n$

Integer LP:
Each $x \in \mathbb{Z}$

(Graphs provided by James Clarke)
Applying Prior Knowledge to Fact-Finders

Prior Knowledge

- Prior knowledge comes in two flavors
 - Common-sense reasoning
 - Cities generally grow over time
 - A person has two biological parents
 - Specific knowledge
 - John was born in 1970 or 1971
 - The population of Los Angeles is greater than Phoenix

- Can be represented with first-order logic
 - Population grows over time \([\text{pop(city,population, year)}]\):
 - \(\forall v,w,x,y,z \ \text{pop}(v,w,y) \land \text{pop}(v,x,z) \land z > y \Rightarrow x > w\)
 - Tom is older than John
 - \(\forall x,y \ \text{Age}(\text{Tom}, x) \land \text{Age}(\text{John}, y) \Rightarrow x>y\)
Applying Prior Knowledge to Fact-Finders
Prior Knowledge as Linear Constraints

- We can convert first-order logic to linear constraints
 - Similar to what is done for ILPs (Yih, 2004)
- Convert FOL to propositional logic
- Convert propositional logic to conjunctive normal form
- Each claim c will be represented by a proposition
 - And ultimately a $[0,1]$ variable in the linear program
 - This variable can be informally thought of as $P(c)$
Applying Prior Knowledge to Fact-Finders
Prior Knowledge as Linear Constraints

- Repeat:
 - Run one iteration of the fact-finder
 - Calculate $T_i(S)$ given $B_{i-1}(C)$
 - Obtain new belief values $B_i(C)'$
 - Apply the linear program to “correct” $B_i(C)' \rightarrow B_i(C)$
Applying Prior Knowledge to Fact-Finders
Prior Knowledge as Linear Constraints

- LP versus ILP
 - Why use a linear program instead of an integer linear program?
 - We want a belief assignment that “minimally” corrects the output of the fact-finder
 - ILP, however, would assign a \{0,1\} value to every variable
 - Best possible assignment at that moment, but “truncates” the information available to later iterations
 - The LP assigns \([0,1]\) value, giving us a “corrected” distribution
 - LPs can be solved in polynomial time (Karmarkar, 1984) whereas ILP is NP-hard
Applying Prior Knowledge to Fact-Finders
Prior Knowledge as Linear Constraints

- For each disjunctive clause with set P of positive literals (claims) and a set N of negations of literals:
 - Add the constraint $\sum_{c \in P} c_v + \sum_{c \in N} (1 - c_v) \geq 1$, where c_v denotes a $[0,1]$ LP variable corresponding to each c

- LHS is a union bound of at least one claim being true
 - Optimistic in some cases
 - $x \lor y$ translates to $x + y \geq 1$
 - Exact if $x \oplus y$
 - But what if $x \Leftrightarrow y$?
Applying Prior Knowledge to Fact-Finders
Prior Knowledge as Linear Constraints

- Many common constraints can be represented exactly
 - For example, $q \Rightarrow r^1 \lor r^2 \lor \ldots$
 - Where the r literals are mutually exclusive
 - Translates exactly to $r^1_v + r^2_v + \ldots \geq q_v$
 - Mutual exclusion among n claims c^1, c^2, \ldots, c^n can be compactly written as $c^1_v + c^2_v + \ldots + c^n_v = 1$
Applying Prior Knowledge to Fact-Finders
The Cost Function

- So linear constraints encode our prior knowledge
- But we do not want just *any* consistent belief distribution
- We want one that is “close” to the belief distribution produced by our fact-finder
- This distance will be our cost function
 - Must be linear
- First, we need to convert the belief scores produced by the fact-finder into a number of “votes”
Applying Prior Knowledge to Fact-Finders
The Cost Function

- Each claim c receives $\omega_c = \omega(B(c))$ votes
- The vote function depends on the fact-finder
 - TruthFinder is probabilistic, so we use $\omega_{inv}(x) = \min ((1-x)^{-1}, m_{inv})$ with $m_{inv} = 10^{10}$
 - # votes scales with error; e.g. 0.1 error = 10 votes, 0.01 error = 100
 - Our other fact-finders have “linear” beliefs
 - Use identify function: $\omega_{idn}(x) = x$
Applying Prior Knowledge to Fact-Finders
The Cost Function

- Now we can write our distance (cost) to be minimized
- We use \textbf{VoteDistance}, a weighted Manhattan distance
 - The cost for increasing belief in a claim is proportional to the number of votes against it
 - The cost for decreasing belief in a claim is proportional to the number of votes for it
- \[\sum_{c \in C} \max \left(\begin{array}{c}
\left(\omega_{M_c} - \omega_c \right) \cdot \left(c_v - \omega_c/\omega_{M_c} \right), \right.
\left. \omega_c \cdot \left(\omega_c/\omega_{M_c} - c_v \right) \right) \]
 - Cost of increasing belief in \(c \)
 - Cost of decreasing belief in \(c \)
- Where \(\omega_{M_c} = \sum_{d \in M_c} \omega_d \)
- Gives the “least objectionable” correction to the fact-finder’s output, frustrating the fewest votes
Applying Prior Knowledge to Fact-Finders From Values to Votes to Belief

- Each c_v has now been assigned a $[0,1]$ value by the LP
- Let ω^{-1} be the inverse vote function (votes \rightarrow belief)
 \[\omega_{\text{inv}}^{-1}(x) = 1 - (1 + y)^{-1} \quad \omega_{\text{idn}}^{-1}(x) = x \]
- How do we use these values to redistribute belief?
 - Vote Conservation: $B(c) = \omega^{-1}(c_v \cdot \omega_{\text{Mc}})$
 - Redistribute votes among the members of each mutual exclusion set
 - Total # votes remains constant
 - Vote Loss: $B(c) = \omega^{-1}(\min(\omega_c, c_v \cdot \omega_{\text{Mc}}))$
 - Claims can only lose votes
 - A claim is not more believable relative to the claims in other mutual exclusion sets simply because the claims in its own mutual exclusion set have lost belief
 - Works slightly better in practice
Applying Prior Knowledge to Fact-Finders

Experiments

- Three domains with four datasets
 - City population (Wikipedia infobox & synthetic data)
 - Basic biographies (Wikipedia infobox data)
 - American vs. British Spelling (articles)
 - British National Corpus, Reuters, Washington Post
 - Sometimes choosing the right fact-finder has the most significant impact on performance
 - Our three novel fact-finders usually do best
 - At other times, prior knowledge is more important
 - And prior knowledge almost always helps
Applying Prior Knowledge to Fact-Finders Experiments: Wikipedia Infoboxes

- Semi-structured data source
 - Relatively easy information extraction
 - Lots of claims
- We know who wrote what
- But still have question of attribution
 - Does an edit outside the infobox mean that the editor read and verified the content of the infobox too?
Applying Prior Knowledge to Fact-Finders
Learning + Inference vs. Inference Based Training

- **Learning + Inference (L+I)**
 - Run the fact-finder to convergence or stop condition
 - Apply global inference (prior knowledge)
 - Works better when our prior knowledge is “noisy”
 - “Cities grow over time” isn’t always true
 - L+I avoids spreading such mistakes

- **Inference Based Training (IBT)**
 - Interleave iterations of the fact-finder with global inference
 - Works better when our prior knowledge is reliable
 - Allows fact-finder to spread corrections over subsequent iterations
Applying Prior Knowledge to Fact-Finders
Population Infobox Dataset

- (City, Population, Year) tuples
- Goal: determine true population of each city in each year
- 44,761 claims, 4,107 authors
- Common-sense: cities grow over time
- Specific knowledge: city X is larger than city Y in year Z
 - Can do even better with more prior knowledge
 - Investment $L+I$ reaches 90.91% with 10,000 such inequalities

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Prior Knowledge</th>
<th>Vote</th>
<th>Sum</th>
<th>3Est</th>
<th>TFs</th>
<th>TFc</th>
<th>A·L</th>
<th>Inv1,2</th>
<th>Pool1,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop</td>
<td>∅</td>
<td>81.49</td>
<td>81.82</td>
<td>81.49</td>
<td>82.79</td>
<td>84.42</td>
<td>80.84</td>
<td>87.99</td>
<td>80.19</td>
</tr>
<tr>
<td>Pop</td>
<td>Growth$_{IBT}$</td>
<td>82.79</td>
<td>79.87</td>
<td>77.92</td>
<td>82.79</td>
<td>86.36</td>
<td>80.52</td>
<td>85.39</td>
<td>79.87</td>
</tr>
<tr>
<td>Pop</td>
<td>Growth$_{L+I}$</td>
<td>82.79</td>
<td>79.55</td>
<td>77.92</td>
<td>83.44</td>
<td>85.39</td>
<td>80.52</td>
<td>89.29</td>
<td>80.84</td>
</tr>
<tr>
<td>Pop</td>
<td>Larger${2500}$$^1{IBT}$</td>
<td>85.39</td>
<td>85.06</td>
<td>80.52</td>
<td>86.04</td>
<td>87.34</td>
<td>84.74</td>
<td>89.29</td>
<td>84.09</td>
</tr>
<tr>
<td>Pop</td>
<td>Larger${2500}$$^1{L+I}$</td>
<td>85.39</td>
<td>85.06</td>
<td>80.52</td>
<td>86.69</td>
<td>86.69</td>
<td>84.42</td>
<td>89.94</td>
<td>84.09</td>
</tr>
</tbody>
</table>
Applying Prior Knowledge to Fact-Finders
Population Synthetic Datset

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Prior Knowledge</th>
<th>Vote</th>
<th>Sum</th>
<th>3Est</th>
<th>TForest</th>
<th>TFc</th>
<th>A·L</th>
<th>Inv<sup>1.2</sup></th>
<th>Pool<sup>1.4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>SynPop</td>
<td>∅</td>
<td>73.45</td>
<td>87.76</td>
<td>84.87</td>
<td>56.12</td>
<td>87.07</td>
<td></td>
<td>90.23</td>
<td>89.41</td>
</tr>
<tr>
<td>SynPop</td>
<td>Pop±8%<sub>IBT</sub></td>
<td>88.31</td>
<td>95.46</td>
<td>92.16</td>
<td>96.42</td>
<td>95.46</td>
<td></td>
<td>96.15</td>
<td>95.46</td>
</tr>
<tr>
<td>SynPop</td>
<td>Pop±8%<sub>L+I</sub></td>
<td>88.31</td>
<td>94.77</td>
<td>92.43</td>
<td>82.39</td>
<td>95.32</td>
<td></td>
<td>95.59</td>
<td>96.29</td>
</tr>
</tbody>
</table>

- What if we had denser data?
 - More claims per source
 - Population claims for each year
- 100 (real) cities, 100 authors
 - 1 to 10 claims per city per year between 2000 and 2008
- Common-sense: no city’s population changes by more than 8% per year
 - Not always true, but more reliable than “cities always grow”
Applying Prior Knowledge to Fact-Finders

Biographies Infobox Dataset (1)

- 129,847 claimed birth dates, 34,201 death dates, 10,418 parent-child pairs, and 9,792 spouses
- Goal: determine people’s true birth/death dates
- Common-sense:
 - Nobody dies before they are born
 - Nobody born/died after 2008
 - People are infertile before the age of 7
 - Nobody lives past 125
 - All spouses have overlapping lifetimes
 - No child is born more than a year after a parent's (father's) death
 - Nobody has more than two parents

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Prior Knowledge</th>
<th>Vote</th>
<th>Sum</th>
<th>3Est</th>
<th>TF_s</th>
<th>TF_c</th>
<th>A.L</th>
<th>Inv_{1,2}</th>
<th>Pool_{1,4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio</td>
<td>\emptyset</td>
<td>89.80</td>
<td>89.53</td>
<td>89.80</td>
<td>73.04</td>
<td>90.09</td>
<td>89.24</td>
<td>88.34</td>
<td>90.01</td>
</tr>
<tr>
<td>Bio</td>
<td>CS_{IBT}</td>
<td>89.20</td>
<td>89.61</td>
<td>89.20</td>
<td>72.44</td>
<td>89.91</td>
<td>89.35</td>
<td>88.60</td>
<td>90.20</td>
</tr>
<tr>
<td>Bio</td>
<td>CS_{L+I}</td>
<td>89.20</td>
<td>89.61</td>
<td>89.20</td>
<td>57.10</td>
<td>90.09</td>
<td>89.35</td>
<td>88.49</td>
<td>90.24</td>
</tr>
</tbody>
</table>
Applying Prior Knowledge to Fact-Finders Biographies Infobox Datset (2)

- Data sparsity
 - Plenty of birthdays, fewer death dates, fewer still familial linkages
 - Limits performance benefit of common-sense on its own, but it does roughly halve convergence times

- What if we add specific knowledge?
 - X was born before Y
 - Common sense plus specific knowledge works quite well:
 - PooledInvestment (L+I)
 - 90.72% with 20,000 such pairs
 - 93.22% with 200,000

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Prior Knowledge</th>
<th>Vote</th>
<th>Sum</th>
<th>3Est</th>
<th>TFS</th>
<th>TFc</th>
<th>A.L</th>
<th>Inv^1:2</th>
<th>Pool^1:4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio</td>
<td>∅</td>
<td>89.80</td>
<td>89.53</td>
<td>89.80</td>
<td>73.04</td>
<td>90.90</td>
<td>89.24</td>
<td>88.34</td>
<td>90.01</td>
</tr>
<tr>
<td>Bio</td>
<td>CS_{IBT}</td>
<td>89.20</td>
<td>89.61</td>
<td>89.20</td>
<td>72.44</td>
<td>89.91</td>
<td>89.35</td>
<td>88.60</td>
<td>90.20</td>
</tr>
<tr>
<td>Bio</td>
<td>CS_{L+I}</td>
<td>89.20</td>
<td>89.61</td>
<td>89.20</td>
<td>57.10</td>
<td>90.09</td>
<td>89.35</td>
<td>88.49</td>
<td>90.24</td>
</tr>
</tbody>
</table>
Applying Prior Knowledge to Fact-Finders
British vs. American Spelling (1)

- “Color” vs. “colour”: 694 such pairs
- An author claims a particular spelling by using it in an article
- Goal: find the “true” British spellings
 - British viewpoint
 - American spellings predominate by far
 - No single objective “ground truth”
- Without prior knowledge the fact-finders do very poorly
 - Predict American spellings instead
Applying Prior Knowledge to Fact-Finders

British vs. American Spelling (2)

Prior knowledge: true spelling of 100 random words

Not very effective

But what if we add common-sense?

Given spelling A, if |A| ≥ 4 and A is a substring of B, A ⇔ B

- e.g. colour ⇔ colourful

Alone, common-sense hurts performance

- Makes the system better at finding American spellings!

Need both common-sense and specific knowledge

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Prior Knowledge</th>
<th>Vote</th>
<th>Sum</th>
<th>3Est</th>
<th>TFe</th>
<th>TFe</th>
<th>A·L</th>
<th>Inv1·2</th>
<th>Pool1·4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spell</td>
<td>(\emptyset)</td>
<td>13.54</td>
<td>9.37</td>
<td>11.96</td>
<td>41.93</td>
<td>7.93</td>
<td>10.23</td>
<td>9.36</td>
<td>9.65</td>
</tr>
<tr>
<td>Spell</td>
<td>Words(^{100})(_{IBT})</td>
<td>13.69</td>
<td>9.02</td>
<td>12.72</td>
<td>44.28</td>
<td>8.05</td>
<td>9.98</td>
<td>11.11</td>
<td>8.86</td>
</tr>
<tr>
<td>Spell</td>
<td>Words(^{100})(_{L+I})</td>
<td>13.69</td>
<td>8.86</td>
<td>12.08</td>
<td>46.54</td>
<td>8.05</td>
<td>9.98</td>
<td>9.34</td>
<td>7.89</td>
</tr>
<tr>
<td>Spell</td>
<td>CS+Words(^{100})(_{IBT})</td>
<td>35.10</td>
<td>31.88</td>
<td>35.10</td>
<td>56.52</td>
<td>29.79</td>
<td>32.85</td>
<td>73.59</td>
<td>80.68</td>
</tr>
<tr>
<td>Spell</td>
<td>CS+Words(^{100})(_{L+I})</td>
<td>35.10</td>
<td>31.72</td>
<td>34.62</td>
<td>55.39</td>
<td>22.06</td>
<td>32.21</td>
<td>30.92</td>
<td>29.95</td>
</tr>
</tbody>
</table>
Conclusion

- Three new fact-finding algorithms:
 - Average-Log, Investment, PooledInvestment
 - High performance vs. existing algorithms
- New framework for incorporating prior knowledge into any fact-finder
 - Highly expressive declarative constraints
 - Tractable (polynomial time)
- Prior knowledge can almost always improve results
 - But becomes absolutely essential when the user’s judgment varies from the norm