FLAME: Combining Aspect Based Opinion Mining and Collaborative Filtering

Yao Wu, Martin Ester
Simon Fraser University, Canada
February 4, 2015
Introduction

Background

- Abundant user-generated reviews available.
- Reviews can help users make better decisions.

Challenges

- **Information Overload** – It’s impossible for users to read all the reviews.
- **Preference Diversity** – People have different opinions towards the same products.
Aspect Based Opinion Mining (ABOM)

- Joint learning of the aspects and the sentiments in reviews.
- E.g., in the above example, **Aspects**: performance, display, value and size. **Sentiments**: 5 stars on display.
1 Introduction

- Aspect-based opinion mining
 - Aspect identification
 - Opinion/sentiment/rating prediction

Apple iPhone 5

5 star: Everything great!! Attractive exterior, large display, long-lasting battery life.
4 star: I like it very much. It has a beautiful appearance and big screen, and its battery lasts longer.
4 star: The glass on the front is strong enough, and I never had to worry about getting scratched.
3 star: It has a bigger screen, very good-looking, but just too pricey…
3 star: Only newbies and wannabe Apple fans pay expensive price soon to be outdated!
1 star: It is really overpriced. DO NOT BUY IT!

Sentiment Analysis System

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Keywords (aspect terms/opinion words)</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exterior</td>
<td>exterior, appearance, attractive, beautiful, good-looking</td>
<td>5</td>
</tr>
<tr>
<td>Screen</td>
<td>display, glass, screen, large, strong, big, bigger</td>
<td>4</td>
</tr>
<tr>
<td>Battery life</td>
<td>battery life, battery, long-lasting, longer</td>
<td>4</td>
</tr>
<tr>
<td>Price</td>
<td>price, pricey, expensive, overpriced</td>
<td>1</td>
</tr>
</tbody>
</table>
Personalized Latent Aspect Rating Analysis

Example

- The *food* of the same restaurant might be delicious for some users but terrible for others.
- When facing a large number of reviews expressing various opinions, users have no idea with whether the *food* of a restaurant meets his own expectation.

Motivation 1

- learn a user’s personalized preferences on different aspects (e.g., *food*) from his past reviews.
- predict his preference on the aspects of a given item by mining the opinions by other users with similar preferences.

Collaborative Filtering ?!
1 Introduction

- Collaborative filtering
 - Predict a user’s interests by collecting preferences from other users
Collaborative Filtering (CF)

Collaborative Filtering

- predict a user’s interests by collaboratively collecting preferences from many other similar users
- But they only take the overall ratings as input. Two users who have assigned the same 4-stars to a restaurant might have significantly different reasoning.

Motivation 2

- Text reviews provide rich information to understand preferences of users at a finer granularity.
- Aspect-based sentiment scores are not explicitly specified by users, but implicitly expressed in the reviews.
Motivation

To sum up ...

Perform Aspect Based Opinion Mining and Collaborative Filtering together.

- Infer latent aspects and aspect ratings.
- Learn users’ preferences on different aspects.
- Predict latent aspect ratings for users on new items.
3 Model

- Factorized Latent Aspect ModEl (FLAME)
 - Combine aspect-based opinion mining and collaborative filtering
3 Model

User aspect distribution
\[\eta_u \sim \mathcal{N}(0, \sigma_\eta I) \]

User latent factor
\[\phi_u \sim \mathcal{N}(0, \sigma_u^2 I) \]

Global aspect distribution
\[\eta_0 \sim \mathcal{N}(0, \sigma_\eta I) \]
3 Model

\[\phi_{i,a} \]

\[\phi_u \]

Item aspect distribution

\[\eta_i \sim \mathcal{N}(0, \sigma_{\eta} I) \]

Item aspect latent factor

\[\phi_{i,a} \sim \mathcal{N}(0, \sigma_{i,a}^2 I) \]

\[\eta_0 \]

\[\eta_u \]

\[\eta_i \]

FLAME
3 Model

Aspect word distribution

$$\beta_a \sim \mathcal{N}(0, \sigma_\beta I)$$

Aspect-rating word distribution

$$\gamma_{a,r} \sim \mathcal{N}(0, \sigma_\gamma I)$$

Combine them, get a new language model

$$\alpha_{a,s}[j] = \frac{\exp(\beta_a[j] + \gamma_{a,s}[j])}{\sum_{l=1}^{V} \exp(\beta_a[l] + \gamma_{a,s}[l])}$$
3 Model

\[
\theta_d[a] = \frac{\exp(\eta_0[a] + \eta_u[a] + \eta_i[a])}{\sum_{a' = 1}^{A} \exp(\eta_0[a'] + \eta_u[a'] + \eta_i[a'])}
\]
3 Model

Document-aspect rating distribution

$$\varphi_{d,a}(\mathbf{r}) = \frac{\mathcal{N}(\mathbf{r} | \phi_u^T \phi_{i,a}, \sigma^2_{r,a})}{\sum_{r'=1}^{R} \mathcal{N}(\mathbf{r'} | \phi_u^T \phi_{i,a}, \sigma^2_{r,a})}$$

$$r_{d,a} \sim \mathcal{N}(\phi_u^T \phi_{i,a}, \sigma^2_{a})$$

$$p(r_{d,a} = r)$$

FLAME
3 Model

\[r_d \sim \mathcal{N}\left(\sum_a \theta_d[a] \mathbb{E}[r_{d,a}], \sigma_r^2 \right) \]
3 Model

\[a_t \sim \text{Multi}(\theta_d) \]

\[s_t \sim \text{Multi}(\varphi_d, a_t) \]

FLAME
3 Model

\[w_n \sim \text{Multi}(\alpha_{a_t, s_t}) \]
Learning Parameters

We adopt a mixture of maximum a posteriori (MAP) point estimates and Bayesian inference to learn the latent variables.

- Lower bound of the joint probability

\[
\mathcal{L} = \sum_d \left(\langle \log p(r_d | \phi_u, \phi_{i,a}, \theta_d) \rangle + \sum_{t \in d} \left(\langle \log p(a_t | \theta_d) \rangle \\
+ \langle \log p(s_t | \phi_d, a) \rangle + \sum_{n \in t} \langle \log p(w_n | a_t, s_t, \beta, \gamma) \rangle \right) \\
+ \sum_{u} \left(\langle \log p(\phi_u | \sigma_u) \rangle + \langle \log p(\eta_u | \sigma_\eta) \rangle \right) \\
+ \sum_i \left(\langle \log p(\phi_i | \sigma_i) \rangle + \sum_a \langle \log p(\phi_{i,a} | \sigma_{i,a}) \rangle \\
+ \langle \log p(\eta_i | \sigma_\eta) \rangle + \langle \log p(\eta | \sigma_\eta) \rangle \right) \\
+ \sum_{\alpha} \langle \log p(\beta_\alpha | \sigma_\beta) \rangle + \sum_{\alpha} \sum_{\beta} \langle \log p(\gamma_{\alpha,\beta} | \sigma_\gamma) \rangle \\
- \sum_d \sum_{t \in d} \left(\langle \log q(a_t | \pi_t) \rangle + \langle \log q(s_t | \lambda_t) \rangle \right) \right)
\]

- Coordinate Ascent-like method to optimize different groups of variables alternatively

- Newton’s method and L_BFGS are used to for variables that do not have closed form solution.
4 Experiment

• Data sets

<table>
<thead>
<tr>
<th></th>
<th>TripAdvisor</th>
<th>Yelp</th>
</tr>
</thead>
<tbody>
<tr>
<td># Users</td>
<td>9,419</td>
<td>6,944</td>
</tr>
<tr>
<td># Items</td>
<td>1,904</td>
<td>3,315</td>
</tr>
<tr>
<td># Reviews</td>
<td>66,637</td>
<td>115,290</td>
</tr>
<tr>
<td>Density</td>
<td>0.37%</td>
<td>0.50%</td>
</tr>
<tr>
<td># Sentences Per Review</td>
<td>12.60 ± 8.64</td>
<td>11.67 ± 7.80</td>
</tr>
<tr>
<td># Words Per Sentence</td>
<td>7.50 ± 3.76</td>
<td>6.47 ± 4.64</td>
</tr>
</tbody>
</table>
4 Experiment

- Perplexity

<table>
<thead>
<tr>
<th></th>
<th>TripAdvisor</th>
<th>Yelp</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA-A</td>
<td>1012.80</td>
<td>767.24</td>
</tr>
<tr>
<td>LDA-AR</td>
<td>918.07</td>
<td>728.00</td>
</tr>
<tr>
<td>D-LDA</td>
<td>771.05</td>
<td>621.24</td>
</tr>
<tr>
<td>FLAME</td>
<td>733.12</td>
<td>590.46</td>
</tr>
</tbody>
</table>

LDA

D-LDA
4 Experiment

- Aspect rating prediction on TripAdvisor

<table>
<thead>
<tr>
<th></th>
<th>PMF</th>
<th>LRR+PMF</th>
<th>FLAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE</td>
<td>0.970</td>
<td>1.000</td>
<td>0.980</td>
</tr>
<tr>
<td>ρ_A</td>
<td>N/A</td>
<td>0.110</td>
<td>0.195</td>
</tr>
<tr>
<td>ρ_I</td>
<td>0.304</td>
<td>0.177</td>
<td>0.333</td>
</tr>
<tr>
<td>$L_{0/1}$</td>
<td>0.210</td>
<td>0.238</td>
<td>0.196</td>
</tr>
</tbody>
</table>

$$\rho_A = \frac{1}{D} \sum_{d=1}^{D} \rho(s_d, s'_d)$$

$$\rho_I = \frac{1}{U \cdot A} \sum_{u=1}^{U} \sum_{a=1}^{A} \rho(s_{Iu,a}, s'_{Iu,a})$$

Zero-One Ranking loss ($L_{0/1}$)

PMF

LRR
Aspect Identification

(a) Location

(b) Location 2-star

(c) Location 5-star

(d) Service

(e) Service 2-star

(f) Service 5-star
Figure: Aspect Weights. *Global* represents the overall aspect distribution on the corpus. *user-1* and *user-2* are the aspect weights of two randomly sampled users, and *item-1* and *item-2* are the aspect weights of two sample items.
Other Applications

Personalized Review Recommendation
Pick the reviews by users with similar tastes.

Recommendation Explanation
More persuasive recommendation explanations by the predicted aspect ratings and some selected reviews written by similar users.