SiGMa: **Simple Greedy Matching** for Aligning Large Knowledge Bases

KDD 2013 – August 14th 2013
Motivation: merging knowledge bases

YAGO
(Wikipedia based)

IMDb
(movie database)
(John Travolta, ActedIn, Grease)
(Steven Spielberg, Directed, E.T.)
Linking open data project
Outline

- KB alignment formulation
- QAP objective motivation
- SiGMa algorithm
- Experiments
Formalization: knowledge base alignment

- **a knowledge base** is a list of **triples** *(facts)*:
 - (entity1, relationship, entity2)
 - e.g. (John Travolta, ActedIn, Grease)

- can think as a **graph** on entities

- given a pair of KBs, goal is to find a **1-1 mapping** between their **equivalent entities**
 - we suppose **no duplicate** within each KB
 - we suppose we are given a matching between the relationships
 - the entities have also **attributes** given as triples:
 - (entity1, propertyName, value) -> these can be used to construct a **similarity score** between pair of entities

- input: pair of KBs + relationships matching

- output: a ranked list of matched pairs from KB1 & KB2
Current approaches

- ontology alignment algorithms (e.g. RiMOM)
 -> do not scale to millions of entities

- record linkage (DB) / entity resolution (NLP)
 - scale using indexing / blocking techniques
 - but typically do not exploit the 1-1 combinatorial structure

- ... SiGMa: scalable greedy algorithm which exploits the 1-1 combinatorial structure
Motivating example & intuition

Use neighbors for:
1) scoring candidates
2) suggest candidates (iterative blocking)
Quadratic Assignment objective

\[y_{ij} \in \{0, 1\} \]

\[
\max_{y \in \mathcal{M}} \sum_{(i,j)} y_{ij} \left[s_{ij} + \sum_{(k,l) \in \mathcal{N}_{ij}} y_{kl} \omega_{ij,kl} \right]
\]

- **pairwise similarity score**
 - between \(i \) and \(j \)

- **graph compatibility score**
 - counts the number of valid neighbors which are currently matched

(normalizing weight)

![Diagram showing the relationship between YAGO and IMDb graphs with nodes and edges labeled with attributes and relationships]
Simple Greedy Matching (SiGMa)

\[
\sum_{(i,j)} y_{ij} \left[s_{ij} + \sum_{(k,l) \in N_{ij}} y_{kl} w_{ij,kl} \right]
\]

1. Start with seed match
2. Put neighbors in S
3. At each iteration:
 a) pick new pair in S which max. increase
 b) add new neighbors in S
4. Stop when variation below threshold

- efficient specialization of agglomerative clustering of [Bhattacharyya & Getoor 2007]
- LINDA [Böhm & al. CIKM 12]

\[y_{ij} = \text{blood in blood out wasCreatedOnDate: 1993-04-16} \]
\[y_{kl} = 1 \text{ if } k \text{ and } l \text{ are related} \]

-> MapReduce on 3B facts!
Experiments: 1) Large-Scale KBs

- Aligning YAGO to IMDb:
 - 4 matched relationships
 - YAGO: 1.5M entities
 - IMDb: 3M entities
 - 50k ground truth pairs (extracted from backlinks)

- Our greedy algorithm SiGMA:
 - run in less than 1 hour (in Python, single threaded!)
 - 50x speedup over PARIS [Suchanek et al. 2011]
 - get 98% precision / 93% recall / 95% F-measure
 - (vs. 57% recall for string matching)
 - sampled precision is above 90%
 - also works without a seed
Experiments: 2) benchmarks

- Also ran on standard Ontology Alignment Evaluation Initiative benchmarks
 - got state-of-the-art results without tweaking parameters

- e.g. Rexa-DBLP OAEI 2009 benchmark:
 - Rexa: 13k entities
 - DBLP: 1.6M entities
 - SiGMA gets 99% / 94% / 96% in less than 10 minutes
 - vs. 97% / 74% / 84% for best previous result by RiMOM [Li + al. 09] in 36 hours!
 - got 1k new mostly correct matches not in ground truth
When should you use SiGMA?

When to use SiGMA?

- 1-1 assumption
 - if not -> use deduplication as pre-processing
 - otherwise, use more general entity resolution algorithms
- relationships between entities
- some pair of entities with strong signal
- large-scale
 - for small scale, use PARIS or standard ontology alignment algorithms
Conclusions & future work

- **SiGMa:**
 - lightweight iterative greedy algorithm to efficiently align KBs with millions of entities
 - can use tailored similarity measures
 - provides natural tradeoff between precision & recall
 - exploits relationship graph to **score** decisions and to **propose candidates**
 - despite simplicity & greediness, does surprisingly well!

- **Future work:**
 - find way to revisit decisions efficiently?
 - handle non 1-1 alignments?
 - learn score functions using training data (learning to rank framework)
Thanks for listening!