Typical line of code:

```r
> results.RNA[results.RNA$batch > 1 , 2:3] <- log2(matrix(1:10,nrow = 5, ncol = 2)) * test.data$value[i.type == "cDNA"]
```

1) Look for `<-` to divide up the code; if no `<-`, then not assigning the results to anything

```
___put_results_here___ <- ___compute_this___
```

2) Look for left parentheses (

 a) The words just to the left are functions

```
> results.RNA[results.RNA$batch > 1 , 2:3] <- log2(matrix(1:10,nrow = 5, ncol = 2)) * test.data$value[i.type == "cDNA"]
```

 b) Everything to the right until the closing parenthesis are directions (i.e., arguments) for the function

```
log2( matrix( 1:10, nrow = 5, ncol = 2))
matrix( 1:10, nrow = 5, ncol = 2)
```

3) Look for subsetting - `$`, `[` or `[[`

 `$` - pulls out a named column from a data frame or a named item from a list

 `[` - starts subsetting; if [] either a vector or list, if [,] either a matrix or data frame

```
results.RNA[results.RNA$batch > 1 , 2:3]
test.data$value[i.type == "cDNA"]
```

4) Math symbols `+`, `-`, `*`, `/`, `^` have normal functions:

```
log2(matrix(1:10,nrow = 5, ncol = 2)) * test.data$value[i.type == "cDNA"]
```
5) Other symbols $\texttt{==}$, $\texttt{!=}$, $\texttt{<}$, $\texttt{>}$ ask for comparisons and yield logical (TRUE/FALSE) results:

```r
results.RNA$batch > 1
i.type == "cDNA"
```

6) Words in quotes are character data only, not objects or functions

```
"cDNA"
```

5) Any remaining words not followed by a single $\texttt{=}$ refer to objects in the workspace

```r
> results.RNA[results.RNA$batch > 1, 2:3 ] <- log2(matrix(1:10, nrow = 5, ncol = 2)) * test.data$value[i.type == "cDNA"]
```

5) Words inside () and followed by a single $\texttt{=}$ can either:

a) name arguments to a function:

```
matrix( 1:10, nrow = 5, ncol = 2)
```

b) create a named column or list item:

```
Tally <- data.frame(number = 1:3, color = c("black", "red", "green"))
```

6) Finally, can break up functions within functions into different lines of code for ease of understanding!

```r
> u <- matrix(1:10, nrow = 5, ncol = 2)
> v <- log2( u )
> w <- test.data$value
> x <- i.type == "cDNA"
> y <- w[ x ]
> z <- results.RNA$batch > 1
> results.RNA[ z, 2:3 ] <- v * y
```

A single equal sign $\texttt{=} \text{can be used as the assignment operator instead of } \texttt{<-}. However, not all instances of single equal signs are assignment operators; if the $\texttt{=} \text{is within parentheses, it is NOT equivalent to } \texttt{<-}！\text{For this reason, most coders will only use } \texttt{<-} \text{as the assignment operator, but } \texttt{=} \text{works for backwards-compatibility and you may see some codes with it.}$