AFET: Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Embedding

Xiang Ren* (UIUC), Wenqi He* (UIUC), Meng Qu (UIUC), Lifu Huang (RPI), Heng Ji (RPI), Jiawei Han (RPI)
Fine-grained Entity Typing

- Assigning type labels to mentions of entities in text
 - Type labels for a mention constitutes a “type-path” in a given type hierarchy (NOT necessarily ending in a leaf node)

<table>
<thead>
<tr>
<th>ID</th>
<th>Sentence</th>
<th>Type-paths</th>
<th>Type-hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Republican presidential candidate Donald Trump spoke during a campaign event in Rock Hill.</td>
<td>![Type-path](Person -> politician)</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>Donald Trump’s company has threatened to withhold up to $1 billion of investment if the U.K. government decides to ban his entry into the country.</td>
<td>![Type-path](Person -> businessman)</td>
<td>![Type-hierarchy](root -> person -> businessman)</td>
</tr>
<tr>
<td>S3</td>
<td>In Trump’s TV reality show, “The Apprentice”, 16 people competed for a job.</td>
<td>![Type-path](Person -> artist -> actor)</td>
<td>![Type-hierarchy](root -> person -> artist)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Text corpus with mentions of entities (bold)
Fine-grained Entity Typing: Applications

- Critical task for bringing structures to unstructured text data
 - Information network construction

- A primitive step in many NLP tasks
 - Coreference resolution, relation extraction, slot filing, ...

- Knowledge base completion

- Question answering

- etc.
Fine-Grained Typing with Distant Supervision

- Manually annotating training corpora with 100+ types
- Expensive & Error-prone
- Current practice: using distant supervision to automatically label training corpora

<table>
<thead>
<tr>
<th>ID</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Republica presidential candidate Donald Trump spoke during a campaign event in Rock Hill.</td>
</tr>
</tbody>
</table>

Automatically typed mention in training corpus

1. **Mention**: “Donald Trump”; **Context**: S1; **Candidate Types**: {person, politician, businessman, artist, actor}
Problem Definition

- **Input:**
 1. Automatically labeled training corpus D
 2. Target type hierarchy T
 3. Knowledge base (KB), and entity-type facts \rightarrow (entity, type) tuples
 4. Test data D_T \rightarrow (mention, context) tuples

- **Output:**
 - Estimate **a single type-path** in T for each test mention in D_T based on the mention itself and its context

- **Non-goals:** Entity mention detection; Entity linking; Type hierarchy creation
Existing Studies

- **Fine-Grained Entity Typing**
 - Context-independent methods \rightarrow not our focus
 - Context-dependent methods:
 1. Multi-label multi-class classification [FIGER-AAAI’12, etc.]
 2. Hierarchical classification [HYENA-COLING’12]
 3. Joint mention-label embedding [WSABIE-ACL’15]
 4. Label propagation [ClusType-KDD’15, etc.]

- **Limitations**
 1. Except for 2, none of them capture semantic similarity between entity types
 2. All of them assume that automatically generated training labels are all “correct”
Partial Label Learning

- Assumes that “only one candidate label is correct” (1 among K is correct)
- **Strategy 1**: Assumes equal contribution of each candidate label and average the outputs from all candidate labels for prediction [CLPL-JMLR’11]
- **Strategy 2**: Progressively estimate true labels (as latent variables) using a EM-kind framework [PL-SVM-KDD’08]

Limitations

- Both cast the task as multi-label learning problem --- ignore the semantic similarity between entity types
- Difficulty in handling high-dimensional feature space --- often the case in entity typing (0.4M+ features)
Fine-Grained Entity Typing: Challenges

Are we using the label information in training data in a correct and comprehensive way?
Challenge I: Noisy Type Labels

<table>
<thead>
<tr>
<th>ID</th>
<th>Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Republican presidential candidate Donald Trump spoke during a campaign event in Rock Hill.</td>
</tr>
<tr>
<td>S2</td>
<td>Donald Trump’s company has threatened to withhold up to $1 billion of investment if the U.K. government decides to ban his entry into the country.</td>
</tr>
<tr>
<td>S3</td>
<td>In Trump’s TV reality show, “The Apprentice”, 16 people competed for a job.</td>
</tr>
</tbody>
</table>

Donald Trump is mentioned in sentences S1-S3.

- Distant supervision
- Assign same types (blue region) to all the mentions
- Does not consider local contexts when assigning type labels
- Introduce label noise to the mentions

The types assigned to entity Trump include person, artist, actor, politician, businessman, while only {person, politician} are correct types for the mention “Trump” in S1.
Challenge I: Noisy Type Labels (cont.)

- Current typing systems either **ignore this issue**
 - assume all the given type labels are “correct” labels

- Or use **simple pruning heuristics** to **delete** mentions with conflicting types
 - aggressive deletion of mentions → significant loss of training data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Wiki</th>
<th>OntoNotes</th>
<th>BBN</th>
<th>NYT</th>
</tr>
</thead>
<tbody>
<tr>
<td># of target types</td>
<td>113</td>
<td>89</td>
<td>47</td>
<td>446</td>
</tr>
<tr>
<td>(1) noisy mentions (%)</td>
<td>27.99</td>
<td>25.94</td>
<td>22.32</td>
<td>51.81</td>
</tr>
<tr>
<td>(2a) sibling pruning (%)</td>
<td>23.92</td>
<td>16.09</td>
<td>22.32</td>
<td>39.26</td>
</tr>
<tr>
<td>(2b) min. pruning (%)</td>
<td>28.22</td>
<td>8.09</td>
<td>3.27</td>
<td>32.75</td>
</tr>
<tr>
<td>(2c) all pruning (%)</td>
<td>45.99</td>
<td>23.45</td>
<td>25.33</td>
<td>61.12</td>
</tr>
</tbody>
</table>

The larger the target type set, the more severe the loss!
Challenge II: Type Correlation

- Type correlation can be derived from the given type hierarchy or entity-type facts in KB
 - e.g., \(\text{sim}(\text{singer}, \text{actor}) > \text{sim}(\text{politician}, \text{actor}) \)

- However, such information are ignored in existing methods → “every type label is treated equally”

- if actor is a true label for “Trump”, both singer and politician (as the false labels) will receive equal penalty

- In fact, penalty on politician should be larger than that on singer

- \(\rightarrow \) mentions of actor entities should be more similar to singer than to politician (instead of equally similar)
Our Solution

- Automatic Fine-Grained Entity Typing (AFET) Framework:
 - Jointly embed **entity mentions** (represented by text feature vectors) and **type labels** (in a given type hierarchy) into a low-dimensional space.
 - In that space, **objects with similar types should be close to each other**.
 - Essentially, we are learning embedding for each text feature and each type, and we can use them to infer types for unseen mentions in test data.
To handle noisy type labels

Model “clean” & “noisy” mentions using different objectives

- **Clean mentions (m):** \(\text{rank} (\text{true type} | m) < \text{rank} (\text{false type} | m) \)
- **Noisy mentions (m’):** \(\text{rank} (\text{“best” candidate type} | m’) < \text{rank} (\text{false type} | m’) \)

- e.g., \(\text{rank} (\text{politician} | “Bernie Sanders”) < \text{rank} (\text{businessman} | “Bernie Sanders”) \)
- “Democratic presidential candidate **Bernie Sanders** will make a campaign stop Friday at the University of Wisconsin”

- e.g., \(\text{rank} (\{\text{actor, artist, politician, businessman, ...}\} | “Trump”) < \text{rank} (\text{singer} | “Trump”) \)
- “In **Trump**’s TV reality show, The Apprentice, 16 people ...”
The AFET Framework: Basic Idea I

- To handle noisy type labels

Model “clean” & “noisy” mentions using different objectives

- **Clean mentions (m):** \(\text{rank}(\text{true type} | m) < \text{rank}(\text{false type} | m) \)
- **Noisy mentions (m’):** \(\text{rank}(\text{“best” candidate type} | m’) < \text{rank}(\text{false type} | m’) \)

Progressively estimate the “best” candidate types for noisy mentions

- In each iteration, candidate types are scored based on *currently estimated mention embeddings & type embeddings* \(\rightarrow \) **highest score as the “best”**
- **Text features used as side signal** when learning mention embeddings
The AFET Framework: Basic Idea II

- To incorporate type correlation

Adaptive margin between mention’s true type and false type, depending on the correlation between them

- **Hierarchy-based correlation**: “close in the hierarchy” → more correlated
- **KB-based correlation**: “sharing more entities in KB” → more correlated

- e.g., sim(singer, actor) > sim(politician, actor)

- **Type distance**: \(\gamma(X, Y) = 1 + 1 / [a + \text{sim}(X, Y)] \)
 - \(a \) is a given smoothing parameter
To incorporate type correlation

Adaptive margin between mention’s true type and false type, depending on the correlation between them

- Require a large margin if the false type is less correlated to the true type (i.e., larger type distance between them)

 - e.g., \(\text{sim}(“Bernie Sanders”, \text{politician}) - \text{sim}(“Bernie Sanders”, \text{businessman}) > \gamma(\text{politician}, \text{businessman}) = 1 \)

 - e.g., \(\text{sim}(“Bernie Sanders”, \text{politician}) - \text{sim}(“Bernie Sanders”, \text{singer}) > \gamma(\text{politician}, \text{singer}) = 10 \)

 “Democratic presidential candidate \textbf{Bernie Sanders} will make a campaign stop ...”
The AFET Framework: Basic Idea II

- To incorporate type correlation

 Adaptive margin between mention’s true type and false type, depending on their correlation (distance)

 • Require a large margin if the false type is less correlated to the true type (i.e., larger type distance between them)

 For a clean mention, its fine-grained true type should be ranked higher than its coarse-grained true types

 • e.g., rank(\text{politician} | “Bernie Sanders”) < rank(\text{person} | “Bernie Sanders”)
The AFET Framework: Overview

1. Use distant supervision to automatically label training corpus D

2. Extract text features for each mention in D; partition training mentions M into clean set M_c and noisy set M_n, based on the given type hierarchy T

3. Perform Hierarchical Partial-Label Embedding to learn mention embeddings and type embeddings jointly, by solving a proposed optimization problem

4. Predict type-path for each mention in test data D_T following a top-down inference procedure
Text Features for Entity Mentions

- Features are extracted from:
 - (1) mention’s name string: *e.g.*, head token, POS tags, Brown Cluster of head token
 - (2) mention’s context in the sentence: *e.g.*, n-grams, dependency roles

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Token</td>
<td>Syntactic head token of the mention</td>
<td>“HEAD:Turing”</td>
</tr>
<tr>
<td>POS</td>
<td>Tokens in the mention</td>
<td>“Turing”, “Machine”</td>
</tr>
<tr>
<td>Character</td>
<td>Part-of-Speech tag of tokens in the mention</td>
<td>“NN”</td>
</tr>
<tr>
<td>Word Shape</td>
<td>All character trigrams in the head of the mention</td>
<td>“:tu”, “tur”, ..., “ng:”</td>
</tr>
<tr>
<td>Length</td>
<td>Word shape of the tokens in the mention</td>
<td>“Aa” for “Turing”</td>
</tr>
<tr>
<td>Context</td>
<td>Number of tokens in the mention</td>
<td>“2”</td>
</tr>
<tr>
<td>Brown Cluster</td>
<td>Unigrams/bigrams before and after the mention</td>
<td>“CXT_B:Maserati,” “CXT_A:and the”</td>
</tr>
<tr>
<td>Dependency</td>
<td>Brown cluster ID for the head token (learned using D)</td>
<td>“4_1100”, “8_1101111”, “12_111011111111”</td>
</tr>
</tbody>
</table>

- “Turing Machine” is used as an example mention from the sentence:
 - “The band’s former drummer Jerry Fuchs—who was also a member of Maserati, Turing Machine and The Juan MacLean—died after falling down an elevator shaft.”
The Joint Embedding Model
Modeling Hierarchy-Induced Errors

- For a mention, the margin between each of its true type labels and each of its false type labels is required to be at least the hierarchy-based/KB-based distance between them.

- For a mention, a false type is ranked higher than its true type if and only if the margin between them is smaller than the hierarchy-based/KB-based distance between them.
Deriving Type Correlation and Distance
Modeling Clean Mentions

- For a clean mention, its “true types” should be ranked higher than all its “false types”
For a clean mention, its “best candidate type” should be ranked higher than all its “false types” (non-candidate types)
The Optimization Problem for AFET
Model Learning

- Block-wise Coordinate Gradient Descent
- Normalize the mapping matrices after each iteration
- Easy to parallelize
Type Inference

- Perform top-down search in the candidate type sub-tree to estimate the correct type-path

Algorithm 2: Type Inference

```
Input: candidate type sub-tree $\mathcal{Y}_i$, mention embeddings $\{u_i\}$, type embeddings $\{v_k\}$, threshold $\eta$

Output: estimated type-path $\mathcal{Y}_i^*$ for $m_i \in \mathcal{M}$

1. for $m_i \in \mathcal{M}$ do
2.     Initialize: $\mathcal{Y}_i$ as $\emptyset$, $r$ as the root of $\mathcal{Y}$
3.     while $C_i(r) \neq \emptyset$ do
4.         $r \leftarrow \arg\max_{y_k \in C_i(r)} s(u_i, v_k)$
5.         if $s(u_i, v_r) > \eta$ then
6.             Update the type-path: $\mathcal{Y}_i^* \leftarrow \mathcal{Y}_i^* \cup \{r\}$
7.         else
8.             return $\mathcal{Y}_i^*$ as the estimated type-path for $m_i$
9.     end
10. end
```
Experiment Setting

- **Datasets:**
 - (1) **Wiki:** 1.5M sentences sampled from ~780k Wikipedia articles
 - (2) **OntoNotes:** 13,109 news
 - (3) **BBN:** 2,311 Wall Street Journal articles

<table>
<thead>
<tr>
<th>Data sets</th>
<th>Wiki</th>
<th>OntoNotes</th>
<th>BBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Types</td>
<td>113</td>
<td>89</td>
<td>47</td>
</tr>
<tr>
<td>#Documents</td>
<td>780,549</td>
<td>13,109</td>
<td>2,311</td>
</tr>
<tr>
<td>#Sentences</td>
<td>1.51M</td>
<td>143,709</td>
<td>48,899</td>
</tr>
<tr>
<td>#Training mentions</td>
<td>2.69M</td>
<td>223,342</td>
<td>109,090</td>
</tr>
<tr>
<td>#Ground-truth mentions</td>
<td>563</td>
<td>9,604</td>
<td>121,001</td>
</tr>
<tr>
<td>#Features</td>
<td>644,860</td>
<td>215,642</td>
<td>125,637</td>
</tr>
<tr>
<td>#Edges in graph</td>
<td>87M</td>
<td>5.9M</td>
<td>2.9M</td>
</tr>
</tbody>
</table>
Compared Methods

- **(1) Sib**: removes siblings types; **(2) Min**: removes types that appear only once in the document; **(3) All**: first performs Sib pruning then Min pruning;

- These three pruning strategies are combined with all baselines in the training stage.

- **(1) FIGER**: it adopts multi-label perceptron. **(2) HYENA**: it adopts hierarchical SVM. **(3) DeepWalk**: embedding a homogeneous graph with binary edges; **(4) LINE**: second-order LINE for feature-label bipartite graph; **(5) WSABIE**: adopts WARP loss for feature-label bipartite graph; **(6) PTE**: applied PTE joint training algorithm on subgraphs G_{mf} and G_{my}. **(7) CNN**: applied convolutional neural network on mention’s local context. **(8) PL-SVM**: uses a margin-based loss to handle label noise. **(9) CLPL**: uses a linear model to encourage large average scores for candidate types.

- For AFET, we compare **(1) AFET**: adopts KB-based type correlation; **(2) AFET-CoH**: adopts hierarchy-based type correlation; **(3) AFET-NoCo**: does not consider type correlation.
Performance Comparison on Fine-Grained Typing
Case Study I
Case Study II
Conclusion
Thank You!

Questions?