1 PathSim

PathSim is discussed in details in the lecture slides, for more information, please see [2].

2 Personalized PageRank

Personalized PageRank [1] is variant of PageRank\(^1\), where instead of jumping/teleporting to an arbitrary node in the network uniformly with some probability, P-PageRank jumps to a set of preferred nodes. In the similarity search setting, the preferred node set only contains the queried node. In linear algebra terminology, both PageRank and P-PageRank try to find the \(\mathbf{v} \) in

\[
\mathbf{v} = (1 - c)A\mathbf{v} + c\mathbf{u} \quad (2.1)
\]

where \(c \in (0, 1) \) is the teleportation constant, \(A \) is the adjacency matrix raw normalized to make sure every row sums to 1, \(\mathbf{v} \) is the fixed-point probability distribution of nodes, i.e., pagerank scores. The only difference is that in normal pagerank \(\mathbf{u} = \mathbf{1}/|V| \), where \(V \) is the entire node set, whereas in P-PageRank, \(\mathbf{u} \) is the preference vector where \(\mathbf{u}(p) = 1/|P| \) if \(p \in P \), and \(\mathbf{u}(p) = 0 \) if \(p \notin P \), here \(P \) is the preferred node set.

To implement the P-PageRank in our similarity task, we suggest you to use iterative algorithm, where you initialize \(\mathbf{v} = \mathbf{1}/|V| \). In each iteration, we redistribute the probability of each node to its neighbors and the preferred node set (the queried node). After \(t \) iterations, output the nodes with top page rank scores as the result.

In our experiment, we use \(t = 10 \) iterations and \(c = 0.15 \). Please directly use the provided APVPA net and APTPA net for computing P-PageRank.

References

\(^1\)https://en.wikipedia.org/wiki/PageRank