Number Systems II:

2’s Complement, Arithmetic, Overflow, & Writing Bit-wise Logical & Shifting Code

Lab 2 part 1 due Thursday
Logic and arithmetic are two primary ways of manipulating stored state

Computer can do 2 things
1) Store state (How do we interpret stored bits?)
2) Manipulate state (How do we perform meaningful mathematical operations?)
233 in one slide!

The class consists roughly of 4 quarters: (Bolded words are the big ideas of the course, pay attention when you hear these words)

1. You will build a simple computer processor. **Build and create state machines with data, control, and indirection**
2. You will learn how high-level language code executes on a processor. **Time limitations create dependencies in the state of the processor**
3. You will learn why computers perform the way they do. **Physical limitations require locality and indirection in how we access state**
4. You will learn about hardware mechanisms for parallelism. **Locality, dependencies, and indirection on performance enhancing drugs**

- We will have a SPIMbot contest!
Today’s lecture

- Two’s complement signed binary representation
 - Negating numbers in Two’s complement
 - Sign extension

- Bit-wise shift operations
 - Writing bit-wise logical and shifting code

- Two’s complement arithmetic
 - Addition
 - Subtraction
 - Overflow
Review: 4-bit 2’s complement

Two’s complement has asymmetric ranges; there is one more negative number than positive number. Here, you can represent -8 but not +8.
Negating Numbers in 2’s Complement

- To negate a number:
 - Complement each bit and then add 1.

\[(\overline{x} \times) + 1 \]

- Example:

\[
\begin{align*}
0100 & = +4_{10} \quad \text{(a positive number in 4-bit two’s complement)} \\
\overline{0111} & = \quad \text{(invert all the bits)} \\
\overline{0100} & = -4_{10} \quad \text{(and add one)} \\
\overline{0011} & = \quad \text{(invert all the bits)} \\
0100 & = +4_{10} \quad \text{(and add one)}
\end{align*}
\]

Sometimes, people talk about “taking the two’s complement” of a number. This is a confusing phrase, but it usually means to negate some number that’s already in two’s complement format.
Negating Numbers in 2’s Complement

- To negate a number:
 - Complement each bit and then add 1.

- Example:

 $\begin{array}{c}
 0100 = +4_{10} \quad \text{(a positive number in 4-bit two’s complement)} \\
 1011 = \quad \text{invert all the bits)} \\
 1100 = -4_{10} \quad \text{(and add one)} \\
 0011 = \quad \text{invert all the bits)} \\
 0100 = +4_{10} \quad \text{(and add one)} \\
 \end{array}$
Converting 2’s Complement to Decimal

- Algorithm 1:
 - if negative, negate; then do unsigned binary to decimal

- Algorithm 2:
 - Same as with n-bit unsigned binary
 - Except, the MSB is worth \(-2^{n-1}\)

Example:

\[
\begin{align*}
0100 &= 4_{10} \\
\text{sign} &
\begin{array}{c}
0011 \\
+ \quad 0001 \\
\hline
0100 = \text{mag} = 4_{10}
\end{array}
\end{align*}
\]

\(0110 = -4_{10}\) (a negative number in 4-bit two’s complement)

\[
\begin{align*}
(-2^3) + 1 \cdot (2^2) \\
= -8 + 4 = -4
\end{align*}
\]
If 01011 is the 5-bit 2’s complement representation for 11, what is the 2’s complement representation for -11?

- A: 11011
- B: 10011
- C: 10101
- D: 01011
- E: 10100
2’s Complement Representation

- If 01001 is the 5-bit unsigned binary representation for 9, what is the 2’s complement representation for 9?
 - A: 10110
 - B: 10111
 - C: 10101
 - D: 01001
 - E: 01010

\[8 + 1 = 9 \]
2’s Complement Negation

- If 01010 is the 5-bit representation for 10, what is the 2’s complement representation for -10?
 - A: 01011
 - B: 10101
 - C: 10110
 - D: 10111
 - E: 11010
Sign Extension

- In everyday life, decimal numbers are assumed to have an infinite number of 0’s in front of them. This helps in “lining up” numbers.

- To subtract 231 and 3, for instance, you can imagine:

\[
\begin{array}{c}
\text{231} \\
- \text{003} \\
\hline
\text{228}
\end{array}
\]

- This works for positive 2’s complement numbers, but not negative ones.

- To preserve sign and value for negative numbers, we add more 1’s.

- For example, going from 4-bit to 8-bit numbers:
 - 0101 (+5) should become 0000 0101 (+5).
 - But 1100 (-4) should become 1111 1100 (-4).

- The proper way to extend any signed binary number is to replicate the sign bit.
Sign Extension, cont.

Addition/Subtraction

0 1 2 3 4 5 6 7

-1 -2 -3 -4 -5 -6 -7 -8

4-bit 8-bit
What you need to know for Lab 2.
Review: Bitwise Logical operations

- Last time we introduced bit-wise logical operations:

 - unsigned char c = a | b; (bit-wise OR)

 OR 0 1 0 1 0 1 0 1
 0 0 0 0 1 1 1 1
 0 1 0 1 1 1 1 1

 - unsigned char d = a & b; (bit-wise AND)

 AND 0 1 0 1 0 1 0 1
 0 0 0 0 1 1 1 1
 0 0 0 0 0 1 0 1

 - unsigned char e = a ^ b; (bit-wise XOR)

 XOR 0 1 0 1 0 1 0 1
 0 0 0 0 1 1 1 1
 0 1 0 1 1 0 1 0

 - unsigned char n = ~a; (bit-wise NOT)

 NOT 0 1 0 1 0 1 0 1
 1 0 1 0 1 0 1 0
 1 0 1 0 1 0 1 0

Bit-wise shifting

- When doing bit-wise logical operations, it can be useful to “shift” bits to the left or right within a word.

- **Left shift:**

 We are shifting bits toward the most significant bit (MSB); we call this a left shift because we think of the MSB being on the left.

We are shifting bits toward the most significant bit (MSB); we call this a left shift because we think of the MSB being on the left.
Bit-wise shifting, cont.

- Two kinds of right shift, depends on type of variable:

 - **Unsigned numbers**

 unsigned char g = f >> 2;

 \[11100000\]

 (right shift logical)

 if unsigned, right shift in zeros

 \[00111000\]

 bottom bits disappear...

 - **Signed numbers**

 signed char h = f;

 \[11100000\]

 unsigned char i = h >> 2;

 (right shift arithmetic)

 if signed, sign extend MSB

 \[11111000\]

 bottom bits disappear...

Note: \(x >> 1\) not the same as \(x/2\) for negative numbers; compare \((-3)>>1\) with \((-3)/2\)
Bit-shifting has lower precedence than arithmetic but higher than bitwise operators

<table>
<thead>
<tr>
<th>Precedence</th>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher</td>
<td>* / %</td>
<td>Multiplication, division, and modulus</td>
</tr>
<tr>
<td></td>
<td>+ -</td>
<td>Addition and subtraction</td>
</tr>
<tr>
<td></td>
<td><< >>></td>
<td>Bitwise shifting</td>
</tr>
<tr>
<td></td>
<td>& ^</td>
<td></td>
</tr>
<tr>
<td>Lower</td>
<td>&&</td>
<td></td>
</tr>
</tbody>
</table>
Useful for extracting bits

- We have the unsigned 8-bit word: \(b_7b_6b_5b_4b_3b_2b_1b_0\)
- And we want the 8-bit word: \(00000b_5b_4b_3\)
 - i.e., we want to extract bits 3-5.

- We can do this with bit-wise logical & shifting operations
 - \(y = (x >> 3) \& 0x7;\)

\[
\begin{align*}
\text{x} & \quad \text{message} \\
\text{x >> 3} & \quad \text{bit mask} \\
(x >> 3) \& 0x7 & \quad \text{00000b_5b_4b_3}
\end{align*}
\]
Useful for merging two bit patterns

- We have 2 unsigned 8-bit words:
 \[a_7a_6a_5a_4a_3a_2a_1a_0 = A \]
 \[b_7b_6b_5b_4b_3b_2b_1b_0 = B \]

- And we want the 8-bit word:
 \[a_7b_6a_5b_4a_3b_2a_1b_0 = C \]

Bit mask

\[C = (A \& 0xAA) | (B \& 0x55) \]
Bit-wise Logical & Shifting

- We have 2 unsigned 8-bit words:
 \[x = a_7a_6a_5a_4a_3a_2a_1a_0 \]
 \[y = b_7b_6b_5b_4b_3b_2b_1b_0 \]

- And we want the 8-bit word:
 \[z = a_3a_2a_1a_0b_3b_2b_1b_0 \]

- A: \[z = (x >> 4) | (y << 4) \]
- B: \[z = (x & 0x0f << 4) | (y & 0xf) \]
- C: \[z = (x >> 4) | (y & 0xf) \]
- D: \[z = (x & 0xf0) | (y & 0xf) \]
- E: \[z = (x << 4) | (y & 0x0f) \]
Bit-wise Logical & Shifting

- We have 2 unsigned 8-bit words:
 \[x = a_7a_6a_5a_4a_3a_2a_1a_0 \]
 \[y = b_7b_6b_5b_4b_3b_2b_1b_0 \]
- And we want the 8-bit word:
 \[z = b_3b_2b_1b_0a_3a_2a_1a_0 \]

- A: \[z = (x \& 0xf) \mid (y \& 0x0f \ll 4) \]
- B: \[z = (x \& 0xf) \mid (y \& 0xf0) \]
- C: \[z = (x \gg 4) \mid (y \ll 4) \]
- D: \[z = (x \& 0x0f) \mid (y \ll 4) \]
- E: \[z = (x \& 0xf) \mid (y \gg 4) \]
Binary addition with 2’s Complement

- You can add two’s complement numbers just as if they are unsigned numbers.
 - Recall, this was the whole reason for this representation

\[
\begin{array}{ccccccc}
\text{carry-out} & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
+ & 1 & 1 & 1 & 1 & 0 & 0 & +(−4) \\
\hline
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[\text{no overflow}\]
Subtraction

- We can implement subtraction by negating the 2nd input and then adding:
Why does this work?

- For n-bit numbers, the negation of B in two’s complement is $2^n - B$ (this is an alternative way of negating a 2’s-complement number).

 \[
 A - B = A + (-B) = A + (2^n - B) = (A - B) + 2^n
 \]

- If $A \geq B$, then $(A - B)$ is a positive number, and 2^n represents a carry out of 1. Discarding this carry out is equivalent to subtracting 2^n, which leaves us with the desired result $(A - B)$.

- If $A < B$, then $(A - B)$ is a negative number $-(B - A)$ and we have $2^n - (B - A)$. This corresponds to the desired result, $(A - B)$, in two’s complement form.
2’s Complement Subtraction

\[
\begin{array}{c}
1 \\
1 \\
0 \\
1 \\
\hline
1 \\
0 \\
1 \\
0 \\
\end{array}
\]

- A: 0111
- B: 0011
- C: 1000
- D: 0101
- E: 1001
2’s Complement Subtraction

\[
\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
\hline
& & 0 & 0 & 1 & 1 \\
\end{array}
\]

\(-8 + 2 + 1 = -5\)

- \text{no overflow}

- A: 1011
- B: 1010
- C: 0001
- D: 0101
- E: 1111
Overflow Review

- Recall that when we add two numbers the result may be larger than we can represent.

\[
\begin{array}{ccccccc}
& & 1 & 0 & 1 & 1 & \text{Augend} \\
+ & 0 & 1 & 1 & 1 & 0 & \text{Addend} \\
\hline
1 & 1 & 0 & 0 & 1 & \text{Sum} \\
\end{array}
\]

(in 5b 2's complement we can represent -16 to +15)

- The same thing can happen when we add negative numbers.

\[
\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 0 & 1 & \text{Augend} \\
+ & 1 & 0 & 1 & 0 & 0 & \text{Addend} \\
\hline
0 & 1 & 1 & 0 & 1 & \text{Sum} \\
\end{array}
\]

\[
\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 0 & 1 & \text{Augend} \\
+ & 1 & 0 & 1 & 0 & 0 & \text{Addend} \\
\hline
0 & 1 & 1 & 0 & 1 & \text{Sum} \\
\end{array}
\]

\[
\begin{array}{ccccccc}
& & 0 & 1 & 0 & 1 & 1 & \text{Augend} \\
+ & 0 & 1 & 1 & 1 & 0 & \text{Addend} \\
\hline
1 & 1 & 0 & 0 & 1 & \text{Sum} \\
\end{array}
\]

\[
\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 0 & 1 & \text{Augend} \\
+ & 1 & 0 & 1 & 0 & 0 & \text{Addend} \\
\hline
0 & 1 & 1 & 0 & 1 & \text{Sum} \\
\end{array}
\]

\[
\begin{array}{ccccccc}
& & 0 & 1 & 0 & 1 & 1 & \text{Augend} \\
+ & 0 & 1 & 1 & 1 & 0 & \text{Addend} \\
\hline
1 & 1 & 0 & 0 & 1 & \text{Sum} \\
\end{array}
\]

\[
\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 0 & 1 & \text{Augend} \\
+ & 1 & 0 & 1 & 0 & 0 & \text{Addend} \\
\hline
0 & 1 & 1 & 0 & 1 & \text{Sum} \\
\end{array}
\]

\[
\begin{array}{ccccccc}
& & 0 & 1 & 0 & 1 & 1 & \text{Augend} \\
+ & 0 & 1 & 1 & 1 & 0 & \text{Addend} \\
\hline
1 & 1 & 0 & 0 & 1 & \text{Sum} \\
\end{array}
\]

\[
\begin{array}{ccccccc}
& & 0 & 1 & 0 & 1 & 1 & \text{Augend} \\
+ & 0 & 1 & 1 & 1 & 0 & \text{Addend} \\
\hline
1 & 1 & 0 & 0 & 1 & \text{Sum} \\
\end{array}
\]
“Carry-out” is a procedure, “Overflow” is an interpretation

Carry-out
- Occurs at every bit-position
- The process of moving larger numbers to higher bit positions
- Focuses on bit-wise operations

Overflow
- Can only be seen after completing an entire mathematical operation
- When the interpretation of a set of bits does not match the expected value after a mathematical operation
- Focuses on representational range (i.e., 4 bits represent 0-15)
How can we know if overflow has occurred?

- The easiest way to detect signed overflow is to look at all of the sign bits.

- Overflow occurs only in the two situations above:
 - If you add two *positive* numbers and get a *negative* result.
 - If you add two *negative* numbers and get a *positive* result.

- Overflow cannot occur if you add a positive number to a negative number. Do you see why?
Overflow clicker

4-bit unsigned integers

\[
\begin{array}{r}
1 & 1 & 1 & 0 \\
+ & 0 & 0 & 1 & 1 \\
\hline
0 & 0 & 1 & 1 \\
\end{array}
\]

4-bit 2’s comp integers

\[
\begin{array}{r}
1 & 1 & 1 & 0 \\
+ & 0 & 0 & 1 & 1 \\
\hline
0 & 0 & 1 & 1 \\
\end{array}
\]

a) Neither overflows
b) Only unsigned addition overflows
c) Only 2’s comp addition overflows
d) Both overflow
Overflow

In which circumstance can overflow not occur?

- A: subtracting a positive number from a negative number
- B: subtracting a negative number from zero
- C: adding two negative numbers
- D: subtracting a negative number from a positive number
- E: subtracting a negative number from a negative number
Overflow in software (e.g., Java programs)

```java
public class overflow {
    public static void main(String[] args) {
        int i = 0;
        while (i >= 0) {
            i++;
            System.out.println("i = "+i);
            i--;
            System.out.println("i = "+i);
            i++;
            System.out.println("i = "+i);
        }
    }
}
```

Output:

```
i = -2147483648 2^{31}
i = 2147483647 2^{31-1}
i = -2147483648
```