Building an ALU (Part 2):
State – the central concept of computing

Computer can do 2 things
1) Store state
2) Manipulate state (Combine arithmetic and logical operations into one unit)
Today’s lecture

- We’ll finish the 32-bit ALU today!
 - 32-bit ALU specification

- Complete 1-bit ALU
- Assembling them to make 32-bit ALU
- Handling flags:
 - zero, negative, overflow
A specification for a 32-bit ALU

Did overflow occur?
Is the output equal to zero?
Is the output negative?

module alu32(out, overflow, zero, negative, A, B, control);
output[31:0] out;
output overflow, zero, negative;
input [31:0] A, B;
input [2:0] control;
Use a modular 1-bit ALU to build 32-bit ALU

- Previously we showed 1-bit adder/subtractor, 1-bit logic unit
 - Time to put them together.

```
module alu1(out, carryout, A, B, carryin, control);
  output      out, carryout;
  input       A, B, carryin;
  input [2:0] control;
```

<table>
<thead>
<tr>
<th>control</th>
<th>out =</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>undefined</td>
</tr>
<tr>
<td>1</td>
<td>undefined</td>
</tr>
<tr>
<td>2</td>
<td>A_i + B_i</td>
</tr>
<tr>
<td>3</td>
<td>A_i - B_i</td>
</tr>
<tr>
<td>4</td>
<td>A_i AND B_i</td>
</tr>
<tr>
<td>5</td>
<td>A_i OR B_i</td>
</tr>
<tr>
<td>6</td>
<td>A_i NOR B_i</td>
</tr>
<tr>
<td>7</td>
<td>A_i XOR B_i</td>
</tr>
</tbody>
</table>
Addition + Subtraction in one circuit (1-bit Arithmetic Unit)

- When Sub = 0, Y = B and Cin = 0. Result = A + B + 0 = A + B.
- When Sub = 1, Y = ~B and Cin = 1. Result = A + ~B + 1 = A – B.

Which parts belong in inside the 1-bit ALU?
Addition + Subtraction in one circuit (1-bit Arithmetic Unit)

- When Sub = 0, Y = B and Cin = 0. Result = A + B + 0 = A + B.
- When Sub = 1, Y = ~B and Cin = 1. Result = A + ~B + 1 = A – B.

What should we do with the full adder’s Cin input?
Addition + Subtraction in one circuit (1-bit Arithmetic Unit)

- When Sub = 0, Y = B and Cin = 0. Result = A + B + 0 = A + B.
- When Sub = 1, Y = ~B and Cin = 1. Result = A + ~B + 1 = A – B.

Where will the “Sub” signal come from?

<table>
<thead>
<tr>
<th>control</th>
<th>out=</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>undefined</td>
</tr>
<tr>
<td>1</td>
<td>undefined</td>
</tr>
<tr>
<td>2</td>
<td>A + B</td>
</tr>
<tr>
<td>3</td>
<td>A – B</td>
</tr>
</tbody>
</table>
Complete 1-bit ALU
What should the control inputs (R0, R1) connect to?

How do we select between the adder and the logic unit?

How do we control the selection?

<table>
<thead>
<tr>
<th>R1</th>
<th>R0</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$G_i = X_iY_i$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$G_i = X_i + Y_i$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$G_i = (X_i + Y_i)'$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$G_i = X_i \oplus Y_i$</td>
</tr>
</tbody>
</table>
Connecting 1-bit ALUs
Flags (overflow, zero, negative)

- Let’s do negative first; negative evaluates to:
 - 1 when the output is negative, and
 - 0 when the output is positive or zero

- Negative =
Flags (overflow, zero, negative)

- zero evaluates to:
 - 1 when the output is equal to zero, else 0

- Zero =
Flags (overflow, zero, negative)

- Overflow (for 2’s complement) evaluates to:
 - 1 when the overflow occurred, else 0
 - adding two positive numbers yields a negative number
 - adding two negative numbers yields a positive number

- Consider the adder for the MSB:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C_in</th>
<th>C_out</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Overflow =
Overflow examples

\[
\begin{array}{cccc}
1 & 1 & 0 & 1 & (\text{-3}) \\
+ & 1 & 1 & 0 & 0 & + (\text{-4}) \\
\hline
1 & 1 & 0 & 0 & (\text{-4})
\end{array}
\]

\[
\begin{array}{cccc}
1 & 0 & 1 & 1 & (\text{-5}) \\
+ & 1 & 1 & 0 & 0 & + (\text{-4}) \\
\hline
1 & 1 & 0 & 0 & (\text{-4})
\end{array}
\]

\[
\begin{array}{cccc}
0 & 1 & 0 & 0 & 4 \\
+ & 0 & 1 & 0 & 0 \\
\hline
0 & 1 & 0 & 0 & 4
\end{array}
\]

\[
\begin{array}{cccc}
0 & 1 & 0 & 0 & 4 \\
+ & 1 & 1 & 0 & 0 & + (\text{-4}) \\
\hline
1 & 1 & 0 & 0 & (\text{-4})
\end{array}
\]