Writing Cache Friendly Code

Tonight: SPIMbot.review session @ 4-5 pm in 1304 SC
Will be recorded
Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions

- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories.
Today

- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using tiling to improve temporal locality
The Memory Mountain

- **Read throughput** (read bandwidth)
 - Number of bytes read from memory per second (MB/s)

- **Memory mountain**: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.
Memory Mountain Test Function

```c
/* The test function */
void test(int elems, int stride) {
    int i, result = 0;
    volatile int sink;

    for (i = 0; i < elems; i += stride)
        result += data[i];
    sink = result; /* So compiler doesn't optimize away the loop */
}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{
    double cycles;
    int elems = size / sizeof(int);

    test(elems, stride); /* warm up the cache */
    cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}
```
The Memory Mountain

Read throughput (MB/s)

Stride (x8 bytes)

Working set size (bytes)

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache
All caches on-chip
The Memory Mountain

Strips of spatial locality

Read throughput (MB/s)

Stride (x8 bytes)

Working set size (bytes)

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache
All caches on-chip
The Memory Mountain

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache
All caches on-chip

Slopes of spatial locality

Ridges of temporal locality

Working set size (bytes)

Stride (x8 bytes)

Read throughput (MB/s)
Warm-up example

- Description:
 - 1 array of length n
 - Walk array m times

- Assumptions
 - 32B cache blocks (fit four, 64-bit (8B) doubles)
 - n is large (array much bigger than cache)
 - m is large (approximate 1/m as 0)

- Average miss rate?
 - A) 0
 - B) 1/8
 - C) 1/4
 - D) 1/2
 - E) 1

```c
double sum = 0.0;
double a[n];

for (i = 0; i < m; i ++) {
    for (j = 0; j < n; j ++) {
        sum += a[j];
    }
}
```
Loop inversion swaps the indexing variable of the inner loop (i indexes the inner loop).

- **Same Assumptions**
 - 32B cache blocks (fit four, 64-bit (8B) doubles)
 - n is large (array much bigger than cache)
 - m is large (approximate 1/m as 0)

- **Average miss rate?**
 - A) 0
 - B) 1/8
 - C) 1/4
 - D) 1/2
 - E) 1

```c
double sum = 0.0;
double a[n];
for (i = 0; i < m; i++) {
    for (j = 0; j < n; j++) {
        sum += a[j];
    }
}
```

```
\begin{array}{|c|c|c|c|c|c|}
\hline
A(i) & 0 & 1 & m & 1 & m-1 \hline
\hline
H & H & H & H & \ldots \hline
\hline
\end{array}
```

```
\[ \text{miss} = \frac{1}{4m} \text{ accesses} \]
```

```
\text{hits} \quad m
```

```
\text{...}
```
Loop Fusion joins two loops that traverse the same cache blocks, increasing temporal locality.

```c
for(int j = 0; j < LARGE; j++) {
    sum += A[j];
}

for(int j = 0; j < LARGE; j++){
    product *= A[j];
}
```

```c
for(int j = 0; j < LARGE; j++){
    sum += A[j];
    product *= A[j];
}
```
Loop Fission separates loops that disrupt each other’s temporal locality

```java
for(int j = 0; j < LARGE; j++) {
    sum += A[j];
    for(int k = 0; k < LARGE; k++){
        other_sum += B[j][k];
    }
}
for(int j = 0; j < LARGE; j++)
    sum += A[j];
for(j = 0; j < LARGE; j++)
    for(int k = 0; k < LARGE; k++){
        other_sum += B[j][k];
    }
```
Accessing two arrays in the same inner loop

- Assumptions
 - 32B cache blocks (fit four, 64-bit (8B) doubles)
 - n & m are large (arrays much bigger than cache)

- Average misses per inner loop iteration?
 - A) 0 B) 1/8 C) 1/4 D) 1/2 E) >= 1

```c
double sum = 0.0;
double a[n], b[m];

for (i = 0; i < m; i ++) {
    for (j = 0; j < n; j ++) {
        sum += a[j] / b[i];
    }
}
```

\[\frac{1}{4} + \frac{1}{4} = \frac{1}{4} \]
Tiling creates a “sliding window” of data, increasing temporal locality

Average misses per inner loop iteration?

A) 0 B) 1/8 C) 1/4 D) 1/2 E) 1
Example: Multiply two NxN matrices

- **Assume:**
 - 32B cache blocks (fit four, 64-bit (8B) doubles)
 - Matrix dimension (N) is very large (Approximate 1/N as 0.0)
 - Cache is not even big enough to hold multiple rows

```c
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}
```

Variable `sum` held in register
Matrices are allocated in row-major order in memory (rows are contiguous in memory)

for (i = 0; i < N; i++) //row traversal
 sum += a[0][i];
 - accesses successive elements
 - if block size (B) > 4 bytes, exploit spatial locality
 - compulsory miss rate = 8 bytes / B

for (i = 0; i < n; i++) //col traversal
 sum += a[i][0];
 - accesses distant elements
 - no spatial locality!
 - compulsory miss rate = 1 (i.e. 100%)

\[N \text{ is large} \]
Matrix Multiplication (ijk)

```c
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

Inner loop:
- **Row-wise**
- **Col-wise**
- **Fixed**

Misses per inner loop iteration:

\[
\frac{1}{4iL_i} + \frac{1}{iL_i} + \frac{1}{iL_i} = 1.25 \frac{\text{misses}}{L_i}
\]
Matrix Multiplication (ijk)

```c
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}
```

Inner loop:

- **Row-wise**
- **Col-wise**
- **Fixed**

Misses per inner loop iteration:

\[\frac{1}{4} \]

\[A \quad B \quad C \]

\[\begin{array}{c}
0.25 \\
+1 \\
+0 \\
\hline
=1.25
\end{array} \]

Options:

- a) 0
- b) 0.25
- c) 0.5
- d) 1
- e) 1.25
Matrix Multiplication (kij)

```c
/* kij */
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Inner loop:

A

- **Fixed**

B

- **Row-wise**

C

- **Row-wise**

Misses per inner loop iteration:

A B C

Total misses per inner loop iteration

a) .25 b) .5 c) .75 d) 1.25 e) 2
Matrix Multiplication (ikj)

```c
/* ikj */
for (i=0; i<n; i++) {
    for (k=0; k<n; k++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Inner loop:

- **Fixed**
- **Row-wise**
- **Row-wise**

Misses per inner loop iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>i,k</td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jki)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = A[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

Inner loop:

Misses per inner loop iteration:

\[
\begin{array}{ccc}
A & B & C \\
& \frac{m}{i} & \frac{m}{l} & \frac{m}{l} \\
\end{array}
\]

Total misses per inner loop iteration
a) .25 b) .5 c) .75 d) 1.25 e) 2
Matrix Multiplication (kji)

```c
/* kji */
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = a[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per *inner loop iteration*:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Inner loop:

- **A** (`i,k`) * Fixed
- **B** (`k,*`) * Col-wise
- **C** (`i,*`) * Col-wise
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

ijk (& jik):
- 2 loads, 0 stores
- misses/iter = 1.25

kij (& ikj):
- 2 loads, 1 store
- misses/iter = 0.5

jki (& kji):
- 2 loads, 1 store
- misses/iter = 2.0
Core i7 Matrix Multiply Performance

Cycles per inner loop iteration

Array size (n)

ijk / jik

jki / kji

kij / ikj
From where comes the performance?

a) Spatial locality
b) Temporal locality
We can using tiling on matrices, just like we did with one-dimensional arrays

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n+j] += a[i*n + k]*b[k*n + j];
}
Cache Miss Analysis

- **Assume:**
 - Matrix elements are doubles
 - Cache block = 4 doubles
 - Cache size $C << n$ (much smaller than n)

- **First iteration:**
 - $n/4 + n = 5n/4$ misses

- **Afterwards in cache:**
 - (schematic)
Cache Miss Analysis

- **Assume:**
 - Matrix elements are doubles
 - Cache block = 4 doubles
 - Cache size $C << n$ (much smaller than n)

- **Second iteration:**
 - Again:
 - $n/4 + n = 5n/4$ misses

- **Total misses:**
 - $5n/4 * n^2 = (5/4) * n^3$
Create tiles in two dimensions (row & col)

\[
c = \text{(double *) calloc(sizeof(double), n*n)};
\]

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i+=B)
 for (j = 0; j < n; j+=B)
 for (k = 0; k < n; k+=B)
 /* B x B mini matrix multiplications */
 for (i1 = i; i1 < i+B; i1++)
 for (j1 = j; j1 < j+B; j1++)
 for (k1 = k; k1 < k+B; k1++)
 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}
Cache Miss Analysis

- **Assume:**
 - Cache block = 4 doubles
 - Cache size $C \ll n$ (much smaller than n)
 - Three tiles fit into cache: $3B^2 < C$

- **First (tile) iteration:**
 - $B^2/4$ misses for each tile
 - $2n/B \times B^2/4 = nB/2$
 (omitting matrix c)

- Afterwards in cache (schematic)
Cache Miss Analysis

- Assume:
 - Cache block = 4 doubles
 - Cache size $C \ll n$ (much smaller than n)
 - Three tiles $\ll B^2$ fit into cache: $3B^2 < C$

- Second (tile) iteration:
 - Same as first iteration
 - $2n/B \times B^2/4 = nB/2$

- Total misses:
 - $nB/2 \times (n/B)^2 = n^3/(2B)$
Summary

- No tiling: \(\frac{5}{4} \times n^3\)
- Tiling: \(\frac{1}{2B} \times n^3\)
 \[\frac{1}{2B} < 1\]

- Suggest largest possible tile size \(B\), but limit \(3B^2 < C\)!

- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: \(3n^2\), computation \(2n^3\)
 - Every array elements used \(O(n)\) times!
 - But program has to be written properly

1) data structure
 \(\gg\) cache
2) multiple iterations on data structure
Concluding Observations

- Programmer can optimize for cache performance
 - How data structures are organized
 - How data are accessed
 - Nested loop structure
 - Tiling is a general technique

- All systems favor “cache friendly code”
 - Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
 - Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)