Announcement

Suppose we don't wish to only store, need to control the bit that is stored. Need to change Q as needed.

1. How do we make $Q=1$ (set Q)

Consider input \overline{S} (active low) does its activity (setting $Q=1$) when $S=0$.

<table>
<thead>
<tr>
<th>Q</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Circuit stores a bit.
when $S=0$

<table>
<thead>
<tr>
<th>\overline{S}</th>
<th>Q</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Set Q

\[
\begin{array}{c|c|c}
\overline{S} & Q & P \\
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

\[
\overline{S}
\]

\[
\text{Q}
\]

\[
\text{P}
\]

(i) When $\overline{S} = 1$, ANDing any value with 1 produces same value

(ii) When $\overline{S} = 0$,

- Upper gate output forced to 1
- Lower gate output forced to 0

\[
\therefore Q \text{ is set}
\]

\[
\times \cdot 1 = \times
\]
2) How do we make $Q=0$? (Reset)

<table>
<thead>
<tr>
<th>\overline{R}</th>
<th>\overline{S}</th>
<th>Q</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\overline{S} \overline{R}$ latch

$S' \overline{R}' = 0 \overline{0}$ $Q = 1$, $P = 1$
$S = 1$, $P = 1$
$\overline{R} \overline{S} = 11$ $Q = 0$

Symbol

Undesirable

How do we avoid $\overline{S} \overline{R} = 00$
Now we have
\[
\overline{S} \overline{R} \text{ latch}
\]

\[
\overline{D} \text{ latch}
\]

This ensures \(\overline{SR} = 00 \) will not happen, but cannot hold a bit!

Solution: Gated D-latch.
Gated D-latch

\[
\begin{array}{llllll}
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
\end{array}
\]

Obs:
(i) \(WE = 1 \quad Q = D \); \(WE = 0 \), \(Q \) holds
(ii) \(P = Q' \)

Symbol: Gated D-latch

\[
\begin{array}{llllll}
WE & D & Q & Q' \\
\end{array}
\]
Problem: If \(WE = 1 \), and \(D \) keeps changing, \(Q \) changes as a result (an undesirable property). This is because we want to have "an output" that can be used by other circuits that rely on \(Q \). To achieve this, allow change to happen only at a specific instance (thus giving other cKts. to use the output).

Solution: Allow state change to happen only at "an edge", say when \(WE \) goes 0 to 1 (or 1 to 0).
when WE goes 0 to 1 (or 1 to 0).

D Flip-flop

Operation: Some value of Q is available when all are low. Latch 1 gets WE=1, latch 2 gets WE=0.
Operation: Some value of x is available.
* When clk is low, latch 1 gets $WE=1$, latch 2 gets $WE=0$.
 Result: D is copied to x, latch 2 holds Q.
* When clk is high, latch 1 gets $WE=0$, latch 2 gets $WE=1$.
 Result: latch 1 holds x, latch 2 copies x to Q.

CLK=0, $x=D$, Q holds
CLK=1, x holds, $Q=x$.
Effect: D is copied to Q when clock goes from low to hi. (positive edge)

Symbol: Positive edge triggered D FF $\begin{array}{c} \downarrow \\
D \quad Q
\end{array}$
Positive edge triggered D FF

Negative edge triggered D FF