Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Presence of voltage = 1
Absence = 0
Serve as switches (logic elements)

• n-type

Input: 1
Switch closed

Input: 0
Switch open
- p-type V_{dd}

\hat{S}

$G \quad D$

Operation:

Input = 1

Switch open

Input = 0

Switch closed

Input	Switch
0 | On
1 | Off

CMOS (Complementary MOS)

Logic Gates

1. NOT gate

\hat{S}

In	p-type
0 | 1
1 | 0

V_{dd}
2) NAND gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>NAND (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

A → C
B → C
\[p \leftrightarrow n \]

- P types are in series, corresponding n-types are in parallel.

- P types are in parallel, n and n are in series.
Complete circuit using the complementarity principle

2) NOR gate
3) NOR gate
3-input AND

A
B
C

A and B and C

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>