Lecture 5: Pseudorandomness

Ryan Cunningham
University of Illinois
ECE 422/CS 461 – Fall 2017
Security News

• “SharknAT&To” vulnerabilities in Arris modems used by AT&T U-verse
• Equifax had “cybersecurity incident,” losing 143 million consumer’s data
• Security researchers discover (patch) vulnerability in IOTA cryptocurrency
ATTACKING HASHES
How do you find a collision?

Pigeonhole principle: collisions must exist

Input space \(\{0,1\}^* \) larger than output \(\{0,1\}^{256} \)

Birthday attack: build a table with \(2^{128} \) entries

With \(~50\%\) probability, have a collision

Cycle finding: “Tortoise and hare” algorithm

\(h(x), h(h(x)), h(h(h(x)), .., h^i(x) \)

These are **generic** - actual attacks rely on **structure** of the particular hash function
Concrete Parameterization

How large of a digest size should we choose?

1. **Estimate an attacker’s budget**
 - e.g., the entire NSA

2. **Factor in hardware improvements**

3. **Consider the best known attacks**
 - Reduction from protocol to well-studied problem

4. **Add a safety margin**

 If all goes well, adding 1 bit increases search space by 2x
Other hash functions:

MD5
- Once ubiquitous
- Broken in 2004
- Easy to find collisions today

SHA1
- Currently widely used
- Collisions recently found!
- Don’t use in new applications

SHA3
- Different construction: “Sponge”
- Not susceptible to *length-extension*
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Snefru</td>
<td></td>
</tr>
<tr>
<td>MD2 (128-bit)[1]</td>
<td></td>
</tr>
<tr>
<td>MD4</td>
<td></td>
</tr>
<tr>
<td>MD5</td>
<td></td>
</tr>
<tr>
<td>RIPEMD</td>
<td></td>
</tr>
<tr>
<td>HAVAL-128[1]</td>
<td></td>
</tr>
<tr>
<td>SHA-0</td>
<td></td>
</tr>
<tr>
<td>SHA-1</td>
<td></td>
</tr>
<tr>
<td>RIPEMD-160</td>
<td></td>
</tr>
<tr>
<td>SHA-2 family</td>
<td></td>
</tr>
<tr>
<td>SHA-3 (Keccak)</td>
<td></td>
</tr>
</tbody>
</table>

Key
- **Didn't exist/not public**
- **Under peer review**
- **Considered strong**
- **Minor weakness**
- **Weakened**
- **Broken**
- **Collision found**

[1] Note that 128-bit hashes are at best 2^{-64} complexity to break; using a 128-bit hash is irresponsible based on sheer digest length.

[3] In 2007, the NIST launched the SHA-3 competition because "Although there is no specific reason to believe that a practical attack on any of the SHA-2 family of hash functions is imminent, a successful collision attack on an algorithm in the SHA-2 family could have catastrophic effects for digital signatures." One year later the first strength reduction was published.

The Hash Function Lounge has an excellent list of references for most of the dates. Wikipedia now has references to the rest.
SHA-1 Collision Found

The first collision in the SHA-1 hash function has been found.

This is not a surprise. We've all expected this for over a decade, watching computing power increase. This is why NIST standardized SHA-3 in 2012.

EDITED TO ADD (2/24): Website for the collision. (Yes, this brute-force example has its own website.)

EDITED TO ADD (3/7): This 2012 cost estimate was pretty accurate.
Lifetimes of popular cryptographic hashes (the rainbow table)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Snefru</td>
<td></td>
</tr>
<tr>
<td>MD2 (128-bit)[1]</td>
<td></td>
</tr>
<tr>
<td>MD4</td>
<td></td>
</tr>
<tr>
<td>MD5</td>
<td></td>
</tr>
<tr>
<td>RIPEMD</td>
<td></td>
</tr>
<tr>
<td>HAVAL-128[1]</td>
<td></td>
</tr>
<tr>
<td>SHA-0</td>
<td></td>
</tr>
<tr>
<td>SHA-1</td>
<td></td>
</tr>
<tr>
<td>RIPEMD-160</td>
<td></td>
</tr>
<tr>
<td>SHA-2 family</td>
<td></td>
</tr>
<tr>
<td>SHA-3 (Keccak)</td>
<td></td>
</tr>
</tbody>
</table>

Key

- Didn't exist/not public
- Under peer review
- Considered strong
- Minor weakness
- Weakened
- Broken
- Collision found

[1] Note that 128-bit hashes are at best 2^{64} complexity to break; using a 128-bit hash is irresponsible based on sheer digest length.

[3] In 2007, the NIST launched the SHA-3 competition because "Although there is no specific reason to believe that a practical attack on any of the SHA-2 family of hash functions is imminent, a successful collision attack on an algorithm in the SHA-2 family could have catastrophic effects for digital signatures." One year later the first strength reduction was published.

The Hash Function Lounge has an excellent list of references for most of the dates. Wikipedia now has references to the rest.
MESSAGE AUTHENTICATION CODES
Goal: Message Integrity

Alice wants to send message m to Bob
Mallory wants to trick Bob into accepting a message Alice didn’t send

Threat model:
Mallory can see, forge, tamper with messages
Goal: Message Integrity

Alice wants to send message m to Bob
Mallory wants to trick Bob into accepting a message Alice didn’t send

Threat model:
Mallory can see, forge, tamper with messages

Setup assumption: shared secret
Solution: Message Authentication Code (MAC)

1. Alice computes $v := f(m)$

2. Bob verifies that $v' = f(m')$, accepts message iff this is true

Function f?

- Easily computable by Alice and Bob;
- But **NOT** computable by Mallory
 (Idea: Secret only Alice & Bob know)

We’re sunk if Mallory can learn $f(m')$ for any $x \neq m'$!
Candidate f: Random function

Input: Any size up to huge maximum

Output: Fixed size (e.g. 256 bits)

Defined by a giant lookup table that’s filled in by flipping coins

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0011111001010001...</td>
</tr>
<tr>
<td>1</td>
<td>1110011010010100...</td>
</tr>
<tr>
<td>2</td>
<td>0101010001010000...</td>
</tr>
</tbody>
</table>

Completely **impractical**

Provably **secure**
Want a function that’s practical but “looks random”...

Pseudorandom function (PRF)

Let’s build one:

Start with a big *family of functions* f_0, f_1, f_2, \ldots all known to Mallory

Use f_k, where k is a secret value (or “key”) known only to Alice/Bob

k is (say) 256 bits, chosen randomly

Kerckhoffs’s Principle

Don’t rely on secret functions

Use a secret key, to choose from a function family
More formal definition of a secure PRF:

Game against Mallory
1. We flip a coin secretly to get bit b
2. If $b=0$, let g be a random function
 If $b=1$, let $g = f_k$, where k is a randomly chosen secret
3. Repeat until Mallory says “stop”:
 Mallory chooses x; we announce $g(x)$
4. Mallory guesses b

We say f is a secure PRF if Mallory can’t do better than random guessing*

i.e., f_k is indistinguishable in practice from a random function, unless you know k

Important fact: There’s an algorithm that always wins for Mallory
A solution for Alice and Bob:

1. Let f by a secure PRF
2. In advance, choose a random k known only to Alice and Bob
3. Alice computes $v := f_k(m)$
4. Bob verifies that $v' = f_k(m')$, accepts message iff this is true

What assumptions are made here?

What if Alice and Bob want to send more than one message?
Is this a PRF?

\[f_k(m) = \text{SHA256}(k \ | \ | \ m) \]
Merkle–Damgård Construction

- Arbitrary-length input
- Fixed-length output
- Built from fixed-size “compression function”

Arbitrary length input

Fixed length output
Recommended Approach: Hash-based MAC (HMAC)

HMAC-SHA256 see RFC 2104

\[\text{HMAC}_k(m) = \text{SHA256} \left(k \oplus c_1 \ || \ \text{SHA256} \left(k \oplus c_2 \ || \ m \right) \right) \]

SHA256 function takes arbitrary length input, returns 256-bit output
Message Authentication Code (MAC)
e.g. HMAC-SHA256

vs.

Cryptographic hash function
e.g. SHA256
not a strong PRF

Used to think the distinction didn’t matter, now we think it does
e.g., *length extension attacks*

Better to use a MAC/PRF (not a hash)

$ openssl dgst -sha256 -hmac <key>$
MAC Crypto Game

Game against Mallory

1. Give Mallory MAC(k, mᵢ) for all mᵢ in M
 In other words, Mallory has an oracle
 Mallory can choose next mᵢ after seeing answer

2. Mallory tries to discover MAC(k, m’) for a new m’ not in M

We can show the MAC game reduces to the PRF game. Mallory wins MAC game → she wins PRF game.

This is a Security Proof
What is a **Security Proof**?
- A *reduction* from an *attack on your protocol* to an attack on a *widely studied, hard problem (presumed)*
- Excludes large classes of attacks, guides *composition*
 - Proofs are in *models*. So, attack outside the model!
- It does **NOT** *prove* that your protocol is *secure*
- We don’t know if there are any hard problems!
- The field of **Modern Cryptography** is based on proofs
- Most widely used primitives (SHA-256, AES, DSA) have no security proof. We rely on them because they’re widely studied
Randomness and Pseudorandomness
Review

Problem:
Integrity of message sent from Alice to Bob

Append bits to message that only Alice and Bob can make

Solution:
Message Authentication Code (MAC)

Practical solution:
Hash-based MAC (HMAC) – $\text{HMAC-SHA256}_k(M)$

Where do these random keys k come from ... ?

Careful: We’re often sloppy about what is “random”
True Randomness

Output of a physical process that is inherently random

Scarce, and hard to get

Pseudorandom Function (PRF)

Sampled from a family of functions using a key

Pseudorandom generator (PRG)

Takes small seed that is really random

Generates a stream (arbitrarily long sequence) of numbers that are “as good as random”
Definition: **PRG** is secure if it’s indistinguishable from a random stream of bits

Similar game to PRF definition:

1. We flip a coin secretly to get a bit b
2. If $b=0$, let s be a truly random stream
 If $b=1$, let s be g_k for random secret k
3. Mallory can see as much of the output of s as he/she wants
4. Mallory guesses b,
 wins if guesses correctly

g is a secure PRG if no winning strategy for Mallory*
Here’s a simple PRG that works:

For some random k and PRF f,
output: \(f_k(0) \| f_k(1) \| f_k(2) \| \cdots \)

Theorem: If \(f \) is a secure PRF, and \(g \) is built from \(f \) by this construction, then \(g \) is a secure PRG.

Proof: Assume \(f \) is a secure PRF, we need to show that \(g \) is a secure PRG.

Proof by contradiction:

1. Assume \(g \) is *not* secure; so Mallory can win the PRG game
2. This gives Mallory a winning strategy for the PRF game:
 a. query the PRF with inputs 0, 1, 2, ...
 b. apply the PRG-distinguishing algorithm
3. Therefore, Mallory can win PRF game; this is a contradiction
4. Therefore, \(g \) is secure
Where do we get true randomness?

Want “indistinguishable from random” which means: adversary can’t guess it

Gather lots of details about the computer that the adversary will have trouble guessing [Examples?]

Problem: Adversary can predict some of this
Problem: How do you know when you have enough randomness?

Modern OSes typically collect randomness, give you API calls to get it

e.g., Linux:
/dev/random a device that gives random bits, blocks until available
/dev/urandom gives output of a PRG, nonblocking, seeded from /dev/random eventually
Confidentiality
Confidentiality

Goal: Keep contents of message \(p \) secret from an eavesdropper

Terminology

- \(p \): plaintext
- \(c \): ciphertext
- \(k \): secret key
- \(E \): encryption function
- \(D \): decryption function

\[
c := E_k(p) \quad \text{ciphertext}
\]

\[
p := D_k(c) \quad \text{plaintext}
\]
Digression: Classical Cryptography

Caesar Cipher

First recorded use: Julius Caesar (100-44 BC)

Replaces each plaintext letter with one a fixed number of places down the alphabet

Encryption: \[c_i := (p_i + k) \mod 26 \]
Decryption: \[p_i := (c_i - k) \mod 26 \]

e.g. (k=3):

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
+Shift: 33333333333333333333333333333333
=Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

Plain: fox go wolverines
+Key: 333 33 33333333333333333333333333
=Cipher: ira jr zroyhulqhv
Cryptanalysis of the Caesar Cipher

Only 26 possible keys:

Try every possible k by “brute force”

Can a computer recognize the right one?

Use frequency analysis: English text has distinctive letter frequency distribution
Later advance: **Vigènere Cipher**

First described by Bellaso in 1553, later misattributed to Vigenère

Called « le chiffre indéchiffrable » ("the indecipherable cipher")

Encrypts successive letters using a sequence of Caesar ciphers determined by the letters of a keyword

For an \(n\)-letter keyword \(k\),

Encryption: \(c_i := (p_i + k_{i \mod n}) \mod 26\)

Decryption: \(p_i := (c_i - k_{i \mod n}) \mod 26\)

Example: \(k=ABC\) (i.e. \(k_0=0, k_1=1, k_2=2\))

Plain: \(b b b b b b b a m a z o n\)

+Key: \(0 1 2 0 1 2 0 1 2 0 1 2\)

=Cipher: \(b c d b c d d a n c z p p\)
Cryptanalysis of the Vigènere Cipher

Simple, if we know the keyword length, n:

1. Break ciphertext into n slices
2. Solve each slice as a Caesar cipher

How to find n? One way: Kasiski method

Published 1863 by Kasiski (earlier known to Babbage?)

Repeated strings in long plaintext will sometimes, by coincidence, be encrypted with the same key letters

Plain: \text{CRYPTOISSHORTFORCRYPTOGRAPHY}
+Key: \text{ABCDABCDABCDABCDABCDABCDABCDABCDABCD}
=Cipher: \text{CSASTPKVISIQUTGQUCSASTP}IUAQJB

Distance between repeated strings in ciphertext is likely a multiple of key length e.g., distance 16 implies n is 16, 8, 4, 2, 1

[What if key is as long as the plaintext?]
Kerckhoff’s Principles

1st: The system must be practically, if not mathematically, indecipherable;

2nd: The system must not require secrecy and must not cause inconvenience should it fall into the hands of the enemy;

3rd: The key must be able to be used in communiques and retained without the help of written notes, and be changed or modified at the discretion of the correspondents;

4th: The system must be compatible with telegraphic communication;

5th: The system must be portable, and remain functional without the help of multiple people;

6th: Finally, it’s necessary, given the circumstances in which the system will be applied, that it’s easy to use, is undemanding, not overly stressful, and doesn’t require the knowledge and observation of a long series of rules.
“Shannon’s Maxim”

The enemy knows the system.
“Schneier's law”

Any fool can invent a cipher that he himself cannot break.
One-time Pad (OTP)

Alice and Bob jointly generate a secret, very long, string of random bits (the one-time pad, k)

To encrypt: \(c_i = p_i \text{ xor } k_i \)

To decrypt: \(p_i = c_i \text{ xor } k_i \)

“one-time” means you should **never** reuse any part of the pad.

If you do:

Let \(k_i \) be pad bit

Adversary learns \((a \text{ xor } k_i)\) and \((b \text{ xor } k_i)\)

Adversary xors those to get \((a \text{ xor } b)\), which is useful to him \[\text{[How?]}\]

Provably secure \[\text{[Why?]}\]

Usually impractical \[\text{[Why? Exceptions?]}\]

\[
\begin{array}{ccc}
 a & b & a \text{ xor } b \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

\[a \text{ xor } b \text{ xor } b = a\]
\[a \text{ xor } b \text{ xor } a = b\]
Obvious idea: Use a **pseudorandom generator** instead of a truly random pad

(Recall: Secure **PRG** inputs a seed \(k \), outputs a stream that is practically indistinguishable from true randomness unless you know \(k \))

Called a **stream cipher**:

1. Start with shared secret key \(k \)
2. Alice & Bob each use \(k \) to seed the PRG
3. To encrypt, Alice XORs next bit of her generator’s output with next bit of plaintext
4. To decrypt, Bob XORs next bit of his generator’s output with next bit of ciphertext

Works nicely, but: don’t **ever** reuse the key, or the generator output bits
Another approach: **Block Ciphers**

Functions that encrypts fixed-size blocks with a reusable key.

Inverse function decrypts when used with same key.

The most commonly used approach to encrypting for confidentiality.

A block cipher is **not** a pseudorandom function

[Why?]
What we want instead:

pseudorandom permutation (PRP)

function from \(n \)-bit input to \(n \)-bit output
distinct inputs yield distinct outputs \((\text{one-to-one})\)

Defined similarly to **PRF**:

practically indistinguishable from a

random permutation without secret \(k \)

Basic challenge: Design a hairy function

that is invertible, but only if you have the key

Minimal properties of a good block cipher:

- Highly nonlinear ("confusion")
- Mixes input bits together ("diffusion")
- Depends on the key
Definition: a cipher is “Semantically Secure”

Similar game to PRF/PRG/PRP definition:

1. We flip a coin secretly to get a bit b, random secret k
2. Mallory chooses arbitrary m_i in M, gets to see $Enc_k(m_i)$
3. Mallory chooses two messages m'_0 and m'_1 not in M
4. If $b=0$, let c be $Enc_k(m'_0)$
 If $b=1$, let c be $Enc_k(m'_1)$
5. Mallory can see c
6. Mallory guesses b, wins if guesses correctly

We can prove this follows from a PRP definition. [Fun to try!]

Also known as: IND-CPA “Chosen plaintext attack”
Today’s most common block cipher:

AES (Advanced Encryption Standard)

- Designed by NIST competition, long public comment/discussion period
- Widely believed to be secure, but we don’t know how to prove it
- Variable key size and block size
- We’ll use 128-bit key, 128-bit block (are also 192-bit and 256-bit versions)
- Ten rounds: Split k into ten subkeys, performs set of operations ten times, each with diff. subkey
Each AES round
128-bits in, 128-bit sub-key, 128-bits out

Four steps:
picture as operations on a
4x4 grid of 8-bit values

1. Non-linear step
 Run each byte through a non-linear function (lookup table)

2. Shift step: Circular-shift each row: i^{th} row shifted by i (0-3)

3. Linear-mix step
 Treat each column as a 4-vector; multiply by constant invertible matrix

4. Key-addition step
 XOR each byte with corresponding byte of round subkey

To decrypt, just undo the steps, in reverse order
Remaining problem: How to encrypt longer messages?

Padding:

Can only encrypt in units of cipher blocksize, but message might not be multiples of blocksize

Solution: Add padding to end of message

Must be able to recognize and remove padding afterward

Common approach: Add n bytes that have value n

[Caution: What if message ends at a block boundary?]
Cipher modes of operation

We know how to encrypt one block, but what about multiblock messages?
Different methods, called “cipher modes”

Straightforward (but bad) approach:

ECB mode *(encrypted codebook)*

Just encrypt each block independently

\[C_i := E_k(P_i) \]

[Disadvantages?]
Cipher modes of operation

We know how to encrypt one block, but what about multiblock messages?
Different methods, called “cipher modes”

Straightforward (but bad) approach:

ECB mode *(encrypted codebook)*

Plaintext | Pseudorandom | ECB mode
Better (and common):

CBC mode (cipher-block chaining)

Lame-CBC (for illustration only)

For each block P_i:

1. Generate random block R_i
2. $C_i := (R_i || E_k(P_i \text{xor } R_i))$

[Pros and cons?]
Real **CBC**

Replace R_i with C_{i-1}

No need to send separately

Must still add one random R_{-1} to start, called

"**initialization vector**" ("**IV**")

Illustration: CBC Encryption
Using OpenSSL to do AES encryption from the command line

$ KEY=$(openssl rand -hex 16)
Generates a random string

$ openssl aes-256-cbc -in mymsg.txt -out mymsg.enc
-p -K ${KEY} -iv $(openssl rand -hex 16)
key=8582D9E1A36DA4DB065394FB1F401DB3
iv =DBB272FE6486C4D9B09DBE464E080468

Prints the key and IV

$ openssl aes-256-cbc -d -in mymsg.enc -out mymsg.txt
-K ${KEY} -iv <iv from above>

- By default, uses the standard padding described earlier
- Unfortunately, you have to handle prepending/extracting the IV on your own
Other modes

OFB, CFB, etc. – used less often

Counter mode

Essentially uses block cipher as a pseudorandom generator

\[\text{XOR } i^{\text{th}} \text{ block of message with } E_k(\text{message_id } || i) \]

[Why do we need message_id?]

[Do we need a message_id for CBC mode?]

[Recover after errors? Decrypt in parallel?]
What is **NOT** covered by **Semantic Security**?

- **“Malleability”** attacks
 Given just some ciphertexts, can the attacker create new ciphertexts that Bob decrypts the wrong value?

- **Encryption does NOT IMPLY** integrity!
 Often you really want both ("authenticated encryption")

- **Chosen Ciphertext attacks**
 The “semantic security” definition does not allow the adversary to see decryptions of (potentially garbage) ciphertexts chosen by the adversary
Assumption we’ve been making so far:
Alice and Bob shared a secret key in advance

Amazing fact:
Alice and Bob can have a public conversation to derive a shared key!
Security News

Report on lightweight cryptography
Report on Lightweight Cryptography

Kerry A. McKay
Larry Bassham
Meltem Sönmez Turan
Nicky Mouha

Computer Security Division
Information Technology Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8114

March 2017
2.3 Lightweight Cryptographic Primitives ... 4
 2.3.1 Lightweight Block Ciphers ... 5
 2.3.2 Lightweight Hash Functions ... 6
 2.3.3 Lightweight Message Authentication Codes .. 6
 2.3.4 Lightweight Stream Ciphers .. 6