Example from class 1/25/11

This example was rushed today. Here are the details.

\[\int \sqrt{4-x^2} \, dx \]

Let \(x = 2 \sin \theta \), \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \)

\[dx = 2 \cos \theta \, d\theta \]

\[\sqrt{4-x^2} = \sqrt{4-4 \sin^2 \theta} = \sqrt{4 \cos^2 \theta} = 2 \cos \theta \]

So,

\[\int \sqrt{4-x^2} \, dx = \int 2 \cos \theta \cdot 2 \cos \theta \, d\theta \]

\[= \int 4 \cos^2 \theta \, d\theta = \int 2(1 + \cos 2\theta) \, d\theta \]

(by trig. identity)

\[= 2\theta + \sin 2\theta + C \]

(by trig. identity)

\[= 2\theta + 2 \sin \theta \cos \theta + C \]

\[= 2 \arcsin \left(\frac{x}{2} \right) + x \cdot \frac{\sqrt{4-x^2}}{2} + C \]

(Plug in the values from the box above)