LC-3 INSTRUCTION SET - PART II

Control instructions

They change the sequence of execution of instructions by manipulating the value of the PC register.

* JMP (unconditional jump): load PC with content of register

\[PC \leftarrow \text{BaseR} \]

Example:

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Oprade (JMP)
* BR (conditional branch): if any of the relevant condition codes occur then increment PC with PC_offset

Notation:

\(n, z, p \): bits in instruction (lower case)

\(N, Z, P \): bits in condition codes (upper case)

\[
\text{If } (n \text{ AND } N) \text{ OR } (z \text{ AND } Z) \text{ OR } (p \text{ AND } P) \\
\text{then } PC \leftarrow PC + \text{SEXT}(\text{PC_offset})
\]
Example:
0 0 0 0 0 0 0 0 0 0
O p c d e n z p PC o f f s e t 9 (BR)

Question: what happens if in the instruction n = z = p = 1?
TRAP: sequence of instruction execution goes to Operating System (OS) service call

\[\text{PC} \leftarrow M[\text{TEXT}(\text{trapvec8})] \]

Examples of trap vectors:
- x21: outputs character to the monitor
- x23: input character from Keyboard
- x25: halts program

Example: 1111 0000 0010 0101

Opcode (TRAP)
Introduction to programming in machine code

* Notation:

1111 0000 0010 0101 ; Comment sentence

Machine code, use spaces for clarity

Comments are preceded by ;
* Starting/stopping program:
First line of program is initial address, not an instruction.
In LC-3, programs must be stored after x2FFF address
0011 0000 0000 0000 ; Load program starting in x3000
Last line of program must stop computer
1111 0000 0010 0101 ; HALT instruction (TRAP x25)
* Working with registers:

1) Clear a register

Example: \(R6 \leftarrow 0 \)
2) Copy register into another

Example: $R6 \leftarrow R1$
3) **Increment register by one**

 Example: \(R6 \leftarrow R6 + 1 \)

4) **Decrement register by one**

 Example: \(R6 \leftarrow R6 - 1 \)
5) Subtract two registers

Example: R7 ← R5 - R6

RTL:
6) **Bitwise OR**

Example: \(R7 \leftarrow R5 \text{ OR } R6 \)

Approach:

RTL: