Building an ALU (Part 1):

Announcements:
Honor’s section survey closing
CATME survey for discussion section
Lab 2 part 1 due Thursday
An Arithmetic Logic Unit (ALU) is the primary manipulator of state information in computers.

Computer can do 2 things
1) Store state
2) Manipulate state (Combine arithmetic and logical operations into one unit)
The class consists roughly of 4 quarters: (Bolded words are the big ideas of the course, pay attention when you hear these words)

1. You will build a simple computer processor:
 - Build and create state machines with data, control, and indirection
2. You will learn how high-level language code executes on a processor:
 - Time limitations create dependencies in the state of the processor
3. You will learn why computers perform the way they do:
 - Physical limitations require locality and indirection in how we access state
4. You will learn about hardware mechanisms for parallelism:
 - Locality, dependencies, and indirection on performance enhancing drugs

We will have a SPIMbot contest!
Today’s lecture

- We start building our computer!
 - We’ll start with the arithmetic/logic unit (ALU)

- Adding single bits
 - Half Adders and Full Adder

- Multi-bit Arithmetic
 - Hierarchical design
 - Subtraction

- Building a Logic Unit
 - Multiplexors
The computation in a computer processor takes place in the arithmetic logic unit (ALU)

- Arithmetic Unit (AU) performs arithmetic operations
 - e.g., addition and subtraction
- Logic Unit (LU) performs bit-wise logical operations
 - e.g., AND, OR, NOR, XOR

Typically these operations are performed on multi-bit words
- The MIPS-subset processor we will build uses 32-bit words

In Lab 3 you will build a 32-bit ALU with the above operations
Binary Addition Review

\[
\begin{array}{c}
1 & 1 & 1 & 0 & 0 & \text{Carries} \\
1 & 0^+ & 1^+ & 1 & \text{Augend} \\
+ & 1 & 1^+ & 1^+ & 0^+ & \text{Addend} \\
\hline
1 & 1 & 0 & 0 & 1 & \text{Sum} \\
\end{array}
\]
First bit position receives two input bits to produce two output bits

Two input bits: We’ll call them x, y

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Augend: 0 1 1 1

Addend: 1 1 1 0

Sum: 1 1 0 0

Two output bits: $c =$ carry out (from first column) $s =$ Sum

Carries: 0 1
Specify the first bit position’s behavior with a truth table

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$s = x \oplus y$

$c = \text{carry out (from first column)}$

$s = \text{Sum}$

Two input bits:
We’ll call them x, y
This truth table specifies a circuit we call a **half adder**

- Adds two input bits to produce a sum and carry out.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[C = XY \]
\[S = X'Y + XY' = X \oplus Y \]

- The carry-out bit has twice the magnitude of the sum bit
Second bit position receives **three** input bits to produce two output bits

- (and every subsequent position)

Still two output bits:
- **c** = carry out
- **s** = Sum

(from first column)

Diagram:
- Three input bits;
 - x, y, carry_in

<table>
<thead>
<tr>
<th>+</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Augend
Addend
Carries
Remember the train module?
Specify the remaining bit positions’ behaviors with a **truth table**

- Adding 3 bits together to get a two bit number

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C_in</th>
<th>C_out</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
This truth table specifies a circuit we call a **Full Adder**

- Adds three input bits to produce a sum and carry out.

\[
S = X \oplus Y \oplus C_{in}
\]
\[
C_{out} = XY + (X \oplus Y)C_{in}
\]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C_{in}</th>
<th>C_{out}</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
We can use hierarchical design to build a full adder from a half adder.

\[
S = X \oplus Y \oplus C_{in} \\
C_{out} = XY + (X \oplus Y)C_{in}
\]

Half Adder Equations
\[
C = XY \\
S = X \oplus Y
\]
We can use hierarchical design to build multi-bit adders

- Recall our discussion about hierarchical design
 - *(The stop lights to prevent train collisions...)*

- Example: 4-bit adder
An example of 4-bit addition

- Let’s try our initial example: $A = 1011$ (eleven), $B = 1110$ (fourteen).

What is the value of S_1?

A) no overflow
B) overflow

- $A = 1011$ (eleven), $B = 1110$ (fourteen).

- What is the value of S_1?
 a) 0
 b) 1
Implementing Subtraction

- Subtraction is technically negating the second input and then adding
 \[A - B = A + (-B) \]

- Negating in 2’s complement is inverting the bits and adding one
 \[-B = \sim B + 1 \]

- Substituting in:

 \[
 A - B = A + (-B) = \begin{array}{l}
 A: \quad A - \sim B + 1 \\
 B: \quad A + \sim B + 1 \\
 C: \quad A - (\sim B + 1) \\
 D: \quad A + \sim B - 1 \\
 E: \quad \text{none of the above}
 \end{array}
 \]
Implementing Subtraction, cont.

- Let’s try an example: \(A=0011 \) (three), \(B=1110 \) (negative 2).

\[A + \sim B + 1 \]

What is the value of \(S_3 \)?

a) 0
b) 1
Use XOR gates to implement Addition + Subtraction in one circuit

- XOR gates let us selectively complement the B input.
 \[X \oplus 0 = X \quad \text{and} \quad X \oplus 1 = X' \]

- When Sub = 0, Y = B and Cin = 0. Result = A + B + 0 = A + B.
- When Sub = 1, Y = \sim B and Cin = 1. Result = A + \sim B + 1 = A - B.
We conceptually distinguish two types of signal in hardware: Data and Control

- **Datapath**
 - These generally carry the numbers we’re crunching
 - E.g., the X and Y inputs and the output S

- **Control**
 - These generally control how data flows and what operations are performed
 - E.g., the SUB signal.
Logical Operations

- In addition to ADD and SUBTRACT, we want our ALU to perform bit-wise AND, OR, NOR, and XOR.
- This should be straightforward.
 - We have gates that perform each of these operations.
Selecting the desired logical operation

- We need a **control** signal to specify the desired operation:
 - We’ll call that signal R
 - 4 operations means R is 2 bits

- We need a circuit to perform the selection:

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_0</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$G_i = X_i Y_i$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>$G_i = X_i + Y_i$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$G_i = (X_i + Y_i)'$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>$G_i = X_i \oplus Y_i$</td>
</tr>
</tbody>
</table>

![Circuit Diagram](image-url)
Multiplexors use **control** bits to select **data**

- A multiplexor is a circuit that (logically) selects one of its data inputs to connect to its data output.

- Consider a 2-to-1 multiplexor. It has:
 - 2 data input bits (I_0, I_1)
 - a 1-bit control input bit (S)
 - 1 data output bit (Y)

- The control input selects which data input is output:

 $$ Y = S'I_0 + SI_1 $$

 $$ Y = \begin{cases} 0 & I_0 \text{ if } S = 0, \\ 1 & I_1 \text{ if } S = 1 \end{cases} $$
In general, a multiplexor (mux) has:

- 2^N data input bits ($I_0 - I_{2N-1}$)
- an N-bit control input (S)
- 1 data output bit (Y)

If $S = K$, then $Y = I_K$

Examples:

- 4-to-1 mux: 4 data input bits, 2-bit control input
 - $Y = S_1'S_0'I_0 + S_1'S_0I_1 + ____I_2 + S_1S_0I_3$

- 16-to-1 mux: 16 data input bits, 4-bit control input
Complete 1-bit Logic Unit
Mux Hierarchical Design (operand width)

- What if we want to mux 2 2bit numbers?
Mux Hierarchical Design (more inputs)

- How do we build a mux with 4 inputs?

A: S_0
B: S_1
C: Either