4. **Defn.** \[f \text{ is continuous (cont.) at } a \]

point \(x = a \) means

1) \(\lim_{x \to a} f(x) \) exists (not \(\pm \infty \))

2) \(f(a) \) defined

and 3) \(\lim_{x \to a} f(x) = f(a) \)

II. **Defn.** \(f \text{ is cont. from the left at } x = a. \)

means

1) \(\lim_{x \to a^-} f(x) \) exists (not \(\pm \infty \))

2) \(f(a^-) \) defined

3) \(\lim_{x \to a^-} f(x) = f(a) \)

R- cont. replace "-" by "+" above

III. **Defn.** \(f \text{ is cont. on an interval } I \)

if \(f \) is cont. at every point of \(I \).
<table>
<thead>
<tr>
<th>#</th>
<th>(\lim_{x \to a^-} f(x))</th>
<th>(\lim_{x \to a^+} f(x))</th>
<th>(\lim_{x \to a} f(x))</th>
<th>(f(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/3</td>
<td>2/3</td>
<td>DNE</td>
<td>undefined</td>
</tr>
<tr>
<td>2</td>
<td>2/3</td>
<td>2/3</td>
<td>DNE</td>
<td>undefined</td>
</tr>
<tr>
<td>3</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>DNE</td>
<td>DNE</td>
<td>DNE</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>L-cont</td>
<td>DNE</td>
<td>DNE</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>DNE</td>
<td>3</td>
<td>DNE</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>R-cont</td>
<td>(\infty)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Types of discontinuities

Removable discontinuity

\[
\lim_{x \to a} f(x) \text{ exists (not } \pm \infty) \]

- can remove discontinuity by redefining \(f(a) \).

Jump discontinuity

Both \(\lim_{x \to a^-} f(x) \) and \(\lim_{x \to a^+} f(x) \) exist (not \(\pm \infty \))

- but not equal to each other.

- \(f(a) \) may or may not be defined.

Note: There are other types of (unnamed) discontinuities:

- **Infinite Discontinuity**

 \[
 \lim_{x \to a^+} f(x) \text{ or } \lim_{x \to a^-} f(x) = \pm \infty \]

 - \(a \to \infty \)

- **Other Type of Disc:**

 \[
 \lim_{x \to 0} \sin \left(\frac{1}{x} \right) \]
• Combining continuous functions

If \(f \) and \(g \) are both cont. at \(a \),

\[
\begin{align*}
f \pm g \\
f - g \\
f \cdot g \\
cf \\
\frac{f}{g}
\end{align*}
\]

all cont. at \(a \)

\(\text{constant} \)

\(\frac{f}{g} \)

\[g(a) \neq 0 \]

(Follows from limit laws. => we get)

E.g. \(\lim_{x \to a} f(x) = L, \lim_{x \to \infty} g(x) = M \)

\[
\begin{align*}
\lim_{x \to a} (f(x) + g(x)) &= L + M \\
\lim_{x \to a} cf(x) &= cL \\
\lim_{x \to a} f(x)g(x) &= \lim_{x \to a} f(x) \lim_{x \to a} g(x) = LM \\
\lim_{x \to a} \frac{f(x)}{g(x)} &= \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M} \text{ if } M \neq 0
\end{align*}
\]
Continuous functions at all x except as noted:

- Polynomials $p(x)$

- Rational functions where denominator $= 0$ except where $q(x) = 0$

- $\sin x$, $\cos x$

- $\tan x$, $\cot x$, $\sec x$, $\csc x$ except where they are undefined

- e^x

- $\ln x$ (where defined)

- Absolute value

- Roots (where defined) $\sqrt[n]{f(x)} > 0$

- Inverse trig (where defined)
Composition of functions, example:

Where is \(f(x) = \ln \left(\frac{1}{x^2 - 1} \right) \) continuous?

Answer: When \(x < -1 \) and when \(x > 1 \).

First: \(\frac{1}{x^2 - 1} \) is cont. where it is defined. At all \(x \) except \(1, -1 \).

Next: \(\ln y \) is cont. where it is defined, i.e. where \(y > 0 \); here \(y = \frac{1}{x^2 - 1} > 0 \) for \(x < -1 \) or \(x > 1 \).

\[f(x) = \ln \left(\frac{1}{x^2 - 1} \right) \] is cont. where defined, i.e., for \(x < -1 \) or \(x > 1 \).

\[\text{Takeaway} \]

fog

\((f \circ g)(x) \) is cont. at \(x = a \) if

1. \(g(x) \) is cont. at \(x = a \) and if
2. \(f(x) \) is cont. at \(g(a) = x \)
IVT:

Suppose \(f \) is cont. on \([a,b]\) and \(N \) is a number

1) between \(f(a) \) and \(f(b) \)

2) \(f(a) \neq f(b) \)

(open interval)

C don't know if \(f(a) \leq f(b) \) or \(f(b) \leq f(a) \), so we write it this way.

\(N \in (f(a), f(b)) \) or \(N \in (f(b), f(a)) \)

Then there exists a number \(c \in (a,b) \) with \(f(c) = N \).

Graphically e.g.: \(f(b) \), \(f(a) \), \(N \).

Think "horizontal lines".

\(f(c) = N \), guaranteed if \(f \) cont. on \([a,b]\).

App: finding zeroes of functions. (Later)
Ex (IVT) Prove the equation \(\sin x = 0.72 \) has at least one solution.

Solution: \(f(x) = \sin x \) is continuous everywhere \(\Rightarrow \) we may apply IVT.

DEA: choose an interval where we think a solution exists. The desired value \(M = 0.72 \) lies between the two function values.

\[\sin 0 = 0 \quad \text{and} \quad \sin \frac{\pi}{2} = 1 \]

Notice \(0.72 \in [0, 1] = [f(a), f(b)] \) and so by IVT, there exists \(c \in (0, \frac{\pi}{2}) \) such that \(f(c) = 0.72 = M \).

I.e. \(\sin c = 0.72 \)

And so the boxed equation has a solution.
COROLLARY to IVT:
"Existence of Zeros":

\(\text{If } f(a) \neq 0 \text{ AND } f(b) \neq 0 \text{ AND } f(a), f(b) \text{ have opposite signs (i.e. one is } > 0, \text{ one is } < 0 \) \)

THEN
\(f(x) \text{ has a zero on } (a, b) \).

Ex. Show that \(\cos x = x \) has a soln on the interval \([0, 1]\).

\[\text{Solution: } \quad \cos x = x \text{ has a soln on } [0, 1] \iff \cos x - x \text{ has a root on } [0, 1]. \]

Let \(f(x) = \cos x - x \).
\(f(x) \) is cont \(\checkmark \)

\(f(0) = 1 \)
\(f(1) = 0.46 \)

\(\therefore \) \(\exists c \in (0, 1) \) such that \(f(c) = 0 \)
Therefore, since $0 \in [f(1), f(0)]$,

\Rightarrow there exists $c \in (0, 1)$ such that $f(c) = 0$ by IVT.

1.3. $\cos c - c = 0$
1.3. $\cos c = c$ for $c \in (0, 1)$ as required.
Idea:

\[f(t) = \text{temperature} \]
\[f(t_a) = 80^\circ \text{ noon yesterday} \]
\[f(t_b) = 75^\circ \text{ now} \]

Since 78° is between 75° and 80°,
at some time \(t_c \) in between \(t_a, t_b \) the temperature 78° must have been achieved:

1.3. \(f(t_c) = 78^\circ \text{ some } t_c \)
Definition

Irrational: Suppose \(f(x) \) is defined on \((a, \infty)\).

\(\lim_{x \to \infty} f(x) = L \) means that the values of \(f(x) \) can be made as close to \(L \) as we'd like by taking \(x \) suff. large.

Graphically, for \(x > c \), \(f(x) \)-vals w’ll in dashed line of \(L \).

Example

\[
\lim_{x \to \infty} \frac{3x^3 - 3x + 2}{2x^3 + 4x^2}
\]

Technique: Find the highest power in the denominator, and "pull" it out of the top/bottom of the fraction.

\[
= \lim_{x \to \infty} \frac{3 - \frac{3}{x^2} + \frac{2}{x^3}}{2 + \frac{4}{x}} \\
= \lim_{x \to \infty} 3 - \frac{3}{x^2} + \frac{2}{x^3} \quad \cdot \quad \frac{x^3}{x^3}
\]

\[
= \lim_{x \to \infty} 3 - \frac{3}{x^2} + \frac{2}{x^3}
\]

\[
= \lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{3}{x^2} + \lim_{x \to \infty} \frac{2}{x^3}
\]

As we go off toward positive infinity, we have a \(\text{HA} \) at \(y = \frac{3}{2} \).

\[
\text{Defn: If either } \lim_{x \to \infty} f(x) = L \quad \Rightarrow \text{the (horiz) line} \\
\text{OR } \lim_{x \to \infty} f(x) = \infty \quad y = L, y = M \quad \text{as a } \text{HA}.
\]

What about \(\lim_{x \to -\infty} f(x) \) here?

In this case, we get the same answer: \(\lim_{x \to -\infty} f(x) = \frac{3}{2} \) (\(\Rightarrow \text{HA of } f(x) \text{ is } y = \frac{3}{2} \))
Pass the Class

plot \(\frac{3x^3 - 3x + 2}{2x^3 + 4x^2} \)

Input interpretation:

\[
\text{plot} \quad \frac{3x^3 - 3x + 2}{2x^3 + 4x^2}
\]

Plots:

\[
\begin{align*}
\text{(x from 2.1 to 5.3)} \\
\text{(x from -17 to 20)}
\end{align*}
\]
\[\lim_{x \to \infty} \frac{15x^3 + 1}{\sqrt[3]{4x^6 + 2x + 5}} = \infty \]

\[\lim_{x \to \infty} \frac{15x^3 + 1}{\sqrt[3]{4 + \frac{2}{x^5} + \frac{5}{x^6}}} = \infty \]

\[\lim_{x \to \infty} \frac{15 - \frac{1}{3}x^3}{\sqrt[3]{4 + \frac{2}{x^5} + \frac{5}{x^6}}} = \frac{15 - 0}{\frac{1}{\sqrt[3]{4}}} = \frac{15}{\frac{1}{\sqrt[3]{4}}} = \frac{15}{\sqrt[3]{4}} \]

The highest power inside the square root of the denominator is \(x^6\), which simplifies to \(\sqrt[3]{x^6} = x^2 = (x^3)^2\) after the square root is applied. (but \(x \to +\infty\))

What about \(\lim f(x) \) here?

\[\lim_{x \to -\infty} \frac{15x^3 + 1}{\sqrt[3]{4x^6 + 2x + 5}} = -\infty \]

\[\lim_{x \to -\infty} \frac{15x^3 + 1}{\sqrt[3]{4 + \frac{2}{x^5} + \frac{5}{x^6}}} = -\infty \]

\[\lim_{x \to -\infty} \frac{15 - \frac{1}{3}x^3}{\sqrt[3]{4 + \frac{2}{x^5} + \frac{5}{x^6}}} = \frac{15 - 0}{\frac{1}{\sqrt[3]{4}}} = \frac{15}{\frac{1}{\sqrt[3]{4}}} = \frac{15}{\sqrt[3]{4}} \]

\(\Rightarrow\) H.A.

of \(f(x)\) are \(y = -\frac{15}{2}, y = \frac{15}{2}\).

Graph it using Wolfram alpha!!!
To find all HA of a fcn \(f(x) \), compute \(\lim_{x \to \infty} f(x) \) and \(\lim_{x \to -\infty} f(x) \).

\[\text{EX} \] Find all HA of \(f(x) = \frac{42 + 12e^{12x}}{9e^{4x} + 6} \)

Notice: The largest power in the denominator is \(e^{4x} \)

Note! Always "brand" the limit first.

\[\lim_{x \to \infty} \frac{42 + 12e^{12x}}{9e^{4x} + 6} = \lim_{x \to \infty} \frac{\frac{42}{e^{4x}} + 12e^{8x}}{9 + \frac{6e^{4x}}{e^{4x}}} = \frac{0 + \infty}{9 + 0} = +\infty \]

No HA to the right \((k > 1)\)

Notice \(\lim_{x \to \infty} e^{kx} = +\infty \)

\(\lim_{x \to -\infty} e^{kx} = 0 \)
\[\lim_{x \to -\infty} \frac{42 + 12e^{12x}}{9e^{4x} + 6} \to \frac{42}{6} = 7 \]

Note: Always "find" the limit first!

\[= \lim_{x \to -\infty} 42 + \lim_{x \to -\infty} 12e^{12x} \]

\[= \lim_{x \to -\infty} 9e^{4x} + \lim_{x \to -\infty} 6 \]

\[= \frac{42 + 0}{0 + 6} = \frac{42}{6} = 7 \]

\(f(x) \) has a HA of \(y = 7 \)
(on the left side of the graph)
This limit involves an indeterminate form as $x \to \infty$. To resolve this, we multiply by the conjugate. Here's the solution:

\[
\lim_{{x \to \infty}} \frac{\sqrt{ax^2 + x} - 3x}{\sqrt{ax^2 + x} + 3x}
\]

\[
= \lim_{{x \to \infty}} \frac{\sqrt{ax^2 + x} - (3x)}{\sqrt{ax^2 + x} + 3x} \cdot \frac{\sqrt{ax^2 + x} + 3x}{\sqrt{ax^2 + x} + 3x}
\]

\[
= \lim_{{x \to \infty}} \frac{(ax^2 + x) - (3x)^2}{\sqrt{ax^2 + x} + 3x}
\]

\[
= \lim_{{x \to \infty}} \frac{x}{\sqrt{x^2(\frac{a}{x} + \frac{1}{x^2})} + 3x}
\]

\[
= \lim_{{x \to \infty}} \frac{1}{\sqrt{a + \frac{1}{x}} + 3}
\]

\[
= \frac{1}{\sqrt{a} + 3}
\]