Example: Prefix Sum

Recursive Doubling with Barriers: Algorithm 2

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Prefix Sum: A good Sequential Algorithm

• Data dependency from iteration to iteration
 • How can this be parallelized at all?

\[
\begin{align*}
B[0] &= A[0]; \\
\text{for (i=1; i<N; i++)} & \\
& \quad B[i] = B[i-1] + A[i];
\end{align*}
\]

• It looks like the problem is inherently sequential, but theoreticians came up with a beautiful algorithm called recursive doubling or just parallel prefix
Parallel Prefix: Recursive Doubling

- N Data Items
- P Processors
- N=P
- Log P Phases
- P additions in each phase
- P log P operations
- Completes in O(logP) time
#pragma omp parallel for
for(i=0; i<n; i++) {B[i] = A[i];}
int d = 1;
while (d < n) // this loop will run for lg n steps
{
 int i;
 #pragma omp parallel for
 for(i = d; i < n; i++) C[i] = B[i - d];

 #pragma omp parallel for
 for(i = d; i < n; i++) B[i] += C[i];

 d *= 2;
}

...
Critique of Prefix Algorithm 1

- The sequential algorithm had n additions
- But the parallel algorithm is doing a total of n*(log n) additions
 - Although they are parallelized by p threads
 - This is an example of an algorithm that is not “work efficient”
- It uses log n barriers, which are expensive operations
- Maybe a thread oriented approach will avoid the log n factors
Prefix Sum Algorithm 2: A Thread Oriented Approach

• What if we let each thread calculate prefix sum over its own range of array?
 • I.e., thread id is responsible for range $B_{\frac{n \cdot id}{p} : \frac{n \cdot (id+1)}{p} - 1}$
 • Id : my thread’s serial number; p : total number of threads
 • Assuming n is a multiple of p

• But then each thread needs the sum of all numbers to its left
Prefix Sum Algorithm 2: A Thread Oriented Approach

• What if we let each thread calculate prefix sum over its own range of array?
 • I.e., thread i is responsible for range $B_{\left[\frac{n*id}{p} : \frac{n*(id+1)}{p}-1\right]}$
 * id – my thread’s serial number; *p – total number of threads
 Assuming n is a multiple of p

• But then each thread needs the sum of all numbers to its left

• If we are willing to double the amount of work, we can obtain this sum with
 a much smaller prefix sum problem of size p

 1. First loop: every thread calculates sum s over its sub-range and copies s into a shared array called sums at sums[id]
 2. Calculate prefix sum of the sums array
 • sums[id-1] has the sum of all values to the left of thread numbered id
 3. Second loop: every thread with serial number id calculates the prefix sum in array B using sums[id-1] and the values in A
id-1

sums

sum

Thread_0

Thread_{id-1}

Thread_{id}

sums[id-1]

myBegin

myEnd
omp_set_num_threads(p);

#pragma omp parallel
{
 int id=omp_get_thread_num();
 int myBegiN = (n*id)/p;
 int myEnD = min((n*(id+1))/p, n);

 int sum=0;
 for(int i=myBegiN;i<myEnD;i++)
 sum+=B[i];
 sums[id]=sum;

 #pragma omp barrier
 #pragma omp single
 {
 for(int i=1;i<p;i++)
 sums[i]+=sums[i-1];
 }
 #pragma omp barrier

 if(id>0)B[myBegiN]+= sums[id-1]
 for(int i=myBegiN+1; i<myEnD; i++)
 B[i]+=B[i-1];
}

Form Local sum
- Calculate Prefix sum of size p
- Sums [id] now contains the sum of values of all previous threads' ranges
- This can be done in parallel but it's not worth it

Complete the Prefix sum