Cache Optimizations
Estimating Performance with Cache Misses

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
To be able to effectively program a modern multiprocessor, we have to understand what it is made up of and how it came to be the way it is today.
What Determines Sequential Performance

• After the code has been compiled (so compilers are out of the picture)
• The floating point units can process arithmetic at a certain rate
• The memory system can bring data into registers at a certain rate
 • By “rate,” we mean bandwidth (i.e., bytes/second)
• Which rate decides performance?
 • The slowest one
• This is quantified in the idea of floating point (or arithmetic) intensity
 • I.e., how many double precision arithmetic operations does a given code do per word (or byte) transferred between memory and registers via “load” or “store” operations
Example Code for Estimating Performance

A loop with some data accesses:

```c
for (i=0; i<N; i++)
    x += A[i];
```

If there were no cache misses:

N * 0.5 ns = 0.5 ms

With cache misses:

N * 0.5 ns + (N/8) * 50 ns = 0.5 ms + 6.25 ms = 6.75 ms

More than 10 times slower

Assumptions:

- Clock rate 2 GHz (0.5 ns period per clock cycle)
- 1 FP per cycle (note: if we had FMAD operation, it could be 2)
- N is 1,000,000
- Cache line size is 64 bytes
- A is an array of doubles
 - 8 bytes each
- Cache miss penalty: 50 ns
Arithmetic Intensity: Example

• What is arithmetic intensity for the following loops?

<table>
<thead>
<tr>
<th>Loop 1</th>
<th>Loop 2</th>
<th>Loop 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>for(i=0;i<N;i++)</td>
<td>for(i=0;i<N;i++)</td>
<td>for(i=0;i<N;i++)</td>
</tr>
<tr>
<td>x+=A[i];</td>
<td>x+=A[i]*A[i];</td>
<td>x+=A[i]*A[i]*A[i];</td>
</tr>
</tbody>
</table>

• In each iteration, there is only 1 word loaded: $A[i]$
 • Why are we not counting x?
 • Because x will be in a register. Loaded once at the beginning of the loop

• How many floating point operations per iteration?
 • Let us count “+” and “*”s separately
 • 1, 2, and 3 respectively (We don’t count integer arithmetic in i++. Why?)

• So, arithmetic intensity of Loop1: 1 FP/word (or 1FP/8bytes: 0.125)
• Loop2: double, Loop 3: triple (i.e 3/8)
Improving Arithmetic Intensity: Example 2

• What is arithmetic intensity for the following loops?

Code 1
```
for(i=0;i<N;i++)
  x += A[i];
for(i=0;i<N;i++)
  s += A[i]*A[i];
```

Code 2
```
for(i=0;i<N;i++) {
  x += A[i];
  s += A[i]*A[i];
}
```

• Code 1 does 1FP op per load
• **Code 2 does 2 FP ops per load, and accomplishes the same result**
 • Loop 2 will be faster
Improving Arithmetic Intensity: Example 3

• What is arithmetic intensity for the following loops?

```c
for(i=0;i<N;i++)
    x += A[i];
for(i=0;i<N;i++)
```

```c
for(i=0;i<N;i++) {
    x += A[i];
}
```

Code 1

Code 2

• No floating point ops in the second loop, but still code2 is better, because it incurs fewer cache misses
Cache Based Optimizations

• For a given code, with a fixed arithmetic intensity, how to improve performance?
• The basic idea is to decrease the number of cache misses
Doubly Nested Loop

```c
for(i=0; i<N; i++)
    for(j=0; j<M; j++)
        x += A[j][i];
```

- What is the problem? Count the number of misses.
- Assume the cache size is less than $N \times w$,
 - Where w is the number of words per cache line.
- Every access will lead to a cache miss
 - N^2 cache misses.
Fixing the Doubly Nested Loop: Reordering

for (j = 0; j < M; j++)
 for (i = 0; i < N; i++)
 x += A[j][i]
Cache Optimizations: Improving Reuse
Matrix Vector Multiplication

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Matrix Vector Multiply

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)

• Assume cache is smaller than N words
• A and C incur only compulsory misses (N^2/w, N/w respectively)
• B is loaded multiple times, with N^2/w misses
 • For each row of A, B is traversed once, but by the time we go to the next row, the older portions of B are out of the cache
Matrix Vector Multiply: improve reuse of B?

- Idea: let us reuse a value from B (say B[j]) multiple times
- Lets say we load B[0]..
 - Which calculations need it?
- A loop interchange will reuse B[0], but A accesses will suffer
 - Column order traversal
- But if we do loop interchange only for X rows, the lines (orange) will still be in cache

```c
for (j = 0; j < N; j++)
    for (i = 0; i < N; i++)
        C[i] += A[i][j]*B[j]
```
Matrix Vector Multiply: improved

for (i = 0; i < N; i+= X)
 for (j = 0; j < N; j++)
 for(k = 0; k < X; k++)
 C[i+k] += A[i+k][j]*B[j]

• Assume cache is smaller than N words
• A and C incur only compulsory misses (N^2/w, N respectively)
• B is reused X times with total N^2/x*w misses
 • For each X rows of A, B is traversed once
Cache Optimizations: Tiling

Matrix Transpose

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Classic Example of Optimizing for Cache Size

• Matrix transpose
• A matrix accesses: N^2 misses!
• B accesses are fine:
 • Only compulsory misses: N^2/w misses

```c
for (i = 0; i < N; i++)
  for (j = 0; j < N; j++)
    B[i][j] = A[j][i]
```

for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 B[i][j] = A[j][i]
Solution: Tiling

Let us assume \(N \) is a multiple of \(X \), the tile-size.

```
for (i = 0; i < N; i += X)
  for (j = 0; j < N; j += X)
    for (p = 0; p < X; p++)
      for (q = 0; q < Y; q++)
        B[i+p][j+q] = A[j+q][i+p]
```
Cache-Oblivious Algorithms

• All of the above ideas were for taking into account the specific finite cache size
• Also, we focused on only one cache level, but in reality there are L1, L2, and L3
• Another idea is to write your algorithms in a way that ignores the specific cache size, but still improves cache performance
 • Cache-oblivious algorithms, which are typically recursive
Cache-Oblivious Algorithms

Diagram B

Diagram A

L.V. Kale

20
Cache-Oblivious Matrix Transpose

B

A
Cache-Oblivious Matrix Transpose

recTranspose(A, x, y, B, t, N) { // t is tilesize
 if (t < X)
 transpose(A, x, y, B, t, N);
 else {
 recTranspose(A, x, y, B, t/2, N);
 recTranspose(A, x, y+t/2, B, t/2, N);
 recTranspose(A, x+t/2, y, B, t/2, N);
 recTranspose(A, x+t/2, y+t/2, B, t/2, N);
 }
}