Approximate Integration

\[\Delta x = \overline{x}_i = x_i = \]

- **Midpoint Rule**
 \[
 \int_a^b f(x)dx = \Delta x [f(\overline{x}_1) + f(\overline{x}_2) + \cdots + f(\overline{x}_n)]
 \]

- **Trapezoidal Rule**
 \[
 \int_a^b f(x)dx = \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)]
 \]

- **Simpsons Rule**
 \[
 \int_a^b f(x)dx = \frac{\Delta x}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + \cdots + 4f(x_{n-1}) + f(x_n)]
 \]

Arc Length

- Write the formula in terms of \(x \): \(y = f(x), a \leq x \leq b \)
 \[
 L = \int_a^b \sqrt{1 + f'(x)^2} \, dx
 \]

- Write the formula in terms of \(y \): \(x = g(y), c \leq y \leq d \)
 \[
 L = \int_c^d \sqrt{1 + g'(y)^2} \, dy
 \]
Area of a Surface of Revolution

General formula:

\[S = \int 2\pi R \, ds \]

<table>
<thead>
<tr>
<th>rotate about x-axis [(R=\quad)]</th>
<th>integral in terms of x</th>
<th>integral in term of y</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotate about y-axis [(R=\quad)]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:
Set up an integral for the area of the surface obtained by rotation the curve \(y = \tan(x), 0 \leq x \leq \pi/3 \)

- about the x-axis in terms of x:

- about the x-axis in terms of y:

- about the y-axis in terms of x:

- about the y-axis in terms of y:
Hydrostatic force

General formula:

\[F = \int_{a}^{b} \rho g \text{(depth)} \text{(width)} \, dy \]

1. Rectangle:

2. Triangle:

3. Parabola, circle, ellipse etc:
Moments and Centers of Mass

\[M_y = \rho \int_a^b \, dx \]

\[M_x = \rho \int_a^b \, dx \]

\[\bar{x} = \]

\[\bar{y} = \]

What if the region lies between two curves \(y = f(x) \) and \(y = g(x) \) where \(f(x) \geq g(x) \)?

\[M_y = \]

\[M_x = \]

Example: A lamina of density \(\rho \) kg/m\(^2\) has the shape of the half circle defined by

\[x^2 + y^2 = 9, \quad y \geq 0. \]

Set up but do not evaluate an integral to compute the moment \(M_x \) about the x-axis.
Sequences

If \(\lim_{n \to \infty} a_n \) exists (as a finite number), we say the the sequence \(\{a_n\} \). Otherwise we say that the sequence is .

Examples: Are the following sequences convergent or divergent?

a. \(a_n = \frac{\sqrt{9n^2 - 2n}}{2n + 3} \)

b. \(a_n = \ln(n + 6) - \ln(n) \)

c. \(a_n = \frac{\cos^2 n}{4^n} \)
Series

Given a series \(\sum_{n=1}^{\infty} a_n \), let \(s_n \) denote its \(n \)th partial sum:

\[
\begin{align*}
 s_n & = \\
\end{align*}
\]

If the sequence \(\{s_n\} \) is convergent, then the series \(\sum_{n=1}^{\infty} a_n \) is called \(\) and we write

\[
\begin{align*}
 \sum_{n=1}^{\infty} a_n & = \\
\end{align*}
\]

- How can we find \(a_n \) if \(s_n \) is given?

\[
\begin{align*}
 a_n & = \\
\end{align*}
\]

- Examples of series we know well:

 The geometric series

 \[
 \sum_{n=1}^{\infty} a r^{n-1} = a + ar + ar^2 + \ldots
 \]

 is convergent/divergent if \(|r| < 1 \) and its sum is:

 If \(\) , the geometric series is **divergent**.

 p-series
Tests we can use to find convergence or divergence:

Test for Divergence

The Integral Test
- What are the hypothesis for f?
- What is the conclusion?

The Comparison Test
Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent.
- If $\sum b_n$ is divergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also divergent.

The Limit Comparison Test
Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

If $\lim_{n \to \infty} \frac{a_n}{b_n} = L$, then either both series converge or both diverge.

Remarks:
- Careful when using the divergence test: If $\lim_{n \to \infty} a_n = 0$, we cannot conclude anything from the divergence test.
 Example: Look at $\sum_{n=1}^{\infty} \frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Both limits are 0, but the first one diverges and the second one converges.
- If using the Integral test make sure you check the hypothesis.
Example: Use the integral test to show whether $\sum_{n=1}^{\infty} e^{-n}$ converges:

Examples: Are the following series convergent or divergent?

a. $\sum_{n=1}^{\infty} \frac{\sin^2(n)}{2n^2 + 3}$

b. $\sum_{n=1}^{\infty} \arctan(n)$

c. $\sum_{n=1}^{\infty} \frac{2^{3n+1}}{3^n}$

d. $\sum_{n=1}^{\infty} \sin\left(\frac{4}{n}\right)$

e. $\sum_{n=1}^{\infty} \frac{n^3 + 5n}{e^n}$
Remember: \(\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \cdots + a_n + \ldots \) and we define

\[
S_n = a_1 + \cdots + a_n \quad \text{and} \quad R_n = a_{n+1} + a_{n+2} + \ldots
\]

When we approximate \(\sum_{n=1}^{\infty} a_n \) by \(S_n \) we make an "error" \(R_n \) and we want to know how big this error is.

<table>
<thead>
<tr>
<th>Reminder Estimate for the Integral Test</th>
</tr>
</thead>
</table>

\[
\leq R_n \leq \sum_{n=1}^{\infty} a_n \leq S
\]

- How many terms of the series \(\sum_{n=1}^{\infty} \frac{5}{n^3} \) would we need to add to estimate the sum to within 0.1?

- Approximate \(\sum_{n=1}^{\infty} \frac{5}{n^3} \) within 0.1.