Integration by Partial Fractions

Goal: evaluate integrals of the form

\[\int \frac{P(x)}{Q(x)} \, dx \]

where \(P \) and \(Q \) are polynomials.
Integration by Partial Fractions

Goal: evaluate integrals of the form

\[\int \frac{P(x)}{Q(x)} \, dx \]

where \(P \) and \(Q \) are polynomials.

Step 0: Reduce to the case \(\text{deg}(P) < \text{deg}(Q) \) by long division.

Step I: Factor \(Q \) into linear and irreducible quadratic terms.

Step II: Express the proper rational function \(\frac{R(x)}{Q(x)} \) as a sum of partial fractions.

Case (i): \(Q \) is a product of distinct linear factors.

Case (ii): \(Q \) contains irreducible quadratic factors, none of which are repeated.

Case (iii): One or more of the factors in \(Q \) is repeated.

Step III: Integrate each term in the partial fraction representation separately.
Integration by Partial Fractions

Goal: evaluate integrals of the form

\[\int \frac{P(x)}{Q(x)} \, dx \]

where \(P \) and \(Q \) are polynomials.

Step 0: Reduce to the case \(\text{deg}(P) < \text{deg}(Q) \) by long division.

Step I: Factor \(Q \) into linear and irreducible quadratic terms.
Integration by Partial Fractions

Goal: evaluate integrals of the form

\[\int \frac{P(x)}{Q(x)} \, dx \]

where \(P \) and \(Q \) are polynomials.

Step 0: Reduce to the case \(\text{deg}(P) < \text{deg}(Q) \) by long division.

Step I: Factor \(Q \) into linear and irreducible quadratic terms.

Step II: Express the proper rational function \(R(x) = \frac{P(x)}{Q(x)} \) as a sum of partial fractions.

Case (i): \(Q \) is a product of distinct linear factors.

Case (ii): \(Q \) contains irreducible quadratic factors, none of which are repeated.

Case (iii): One or more of the factors in \(Q \) is repeated.

Step III: Integrate each term in the partial fraction representation separately.
Integration by Partial Fractions

Goal: evaluate integrals of the form

\[\int \frac{P(x)}{Q(x)} \, dx \]

where \(P \) and \(Q \) are polynomials.

Step 0: Reduce to the case \(\deg(P) < \deg(Q) \) by long division.

Step I: Factor \(Q \) into linear and irreducible quadratic terms.

Step II: Express the proper rational function \(R(x) = \frac{P(x)}{Q(x)} \) as a sum of partial fractions.

Case (i): \(Q \) is a product of distinct linear factors.
Case (ii): \(Q \) contains irreducible quadratic factors, none of which are repeated.
Case (iii): One or more of the factors in \(Q \) is repeated.

Step III: Integrate each term in the partial fraction representation separately.