Papers from Projects

Several students taking the previous offerings of similar courses (527, 598DM, 598TX) published papers based on their course projects. Here are some of the papers (with the bolded names of students from the courses):

1. Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, Darko Marinov
 An Empirical Analysis of Flaky Tests
 22nd ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE 2014), Hong Kong, November 2014

2. August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, Darko Marinov
 Balancing Trade-Offs in Test-Suite Reduction
 22nd ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE 2014), Hong Kong, November 2014

3. Semih Okur, Cansu Erdogan, Danny Dig
 Converting Parallel Code from Low-Level Abstractions to Higher-Level Abstractions

4. Vilas Jagannath, Mathew Kirn, Yu Lin, and Darko Marinov
 Evaluating Machine-Independent Metrics for State-Space Exploration
 5th International Conference on Software Testing, Verification, and Validation (ICST 2012), pages 320-329, Montreal, Canada, April 2012

5. Sandro Badame and Danny Dig
 Refactoring Meets Spreadsheet Formulas

6. Vilas Jagannath, Qingzhou Luo, and Darko Marinov
 Change-Aware Preemption Prioritization
 International Symposium on Software Testing and Analysis (ISSTA 2011), pages 133-143, Toronto, Canada, July 2011

 ReAssert: A Tool for Repairing Broken Unit Tests
 International Conference on Software Engineering, Demonstrations Track (ICSE Demo 2011), pages 1010-1012, Honolulu, HI, May 2011

8. Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar Pasupathy
 SherLog: Error Diagnosis by Connecting Clues from Run-time Logs
 15th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLSO 2010), pages 143-154, Pittsburgh, PA, March 2010

9. Vilas Jagannath, Yun Young Lee, Brett Daniel, and Darko Marinov
 Reducing the costs of bounded-exhaustive testing
 Fundamental Approaches to Software Engineering (FASE 2009), pages 171-185, York, UK, March 2009

10. Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou
 AutoISES: Automatically Inferring Security Specifications and Detecting Violations

11. Danny Dig, Stas Negara, Vibhu Mohindra, Ralph Johnson
 ReBA: A Tool for Generating Binary Adapters for Evolving Java Libraries
 International Conference on Software Engineering, Demonstrations Track (ICSE Companion 2008), pages 963-964, Leipzig, Germany, May 2008

12. Danny Dig, Stas Negara, Vibhu Mohindra, Ralph Johnson
 ReBA: Refactoring-aware Binary Adaptation of Evolving Libraries
 International Conference on Software Engineering (ICSE 2008), pages 441-450, Leipzig, Germany, May 2008

13. Marcelo d'Amorim, Carlos Pacheco, Tao Xie, Darko Marinov, and Michael D. Ernst
 An empirical comparison of automated generation and classification techniques for object-oriented unit testing

14. Sam Kamin, Baris Aktemur, and Michael Katelman
 Staging static analyses for program generation
 Generative Programming and Component Engineering (GPCE 2006), pages 1-10, Portland, OR, Oct. 2006

15. Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson
 Automatic Detection of Refactorings for Libraries and Frameworks
 International Workshop on Object-Oriented Reengineering (WOOR 2005)

16. Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff
 SOBER: Statistical Model-based Bug Localization

17. **Shan Lu**, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou
 BugBench: A Benchmark for Evaluating Bug Detection Tools

18. **Ahmed Sobeih**, Mahesh Viswanathan, Darko Marinov, and Jennifer Hou
 Finding Bugs in Network Protocols Using Simulation Code and Protocol-Specific Heuristics
 The Seventh International Conference on Formal Engineering Methods (ICFEM 2005)

Note: Students should NOT buy the papers but follow the instructions 'Accessing Papers in Online Collections' from I2CS Specific Information.

Current students in the course often ask for sample work from previous offerings. Two points are important about these papers: (1) your choice of specific topics may greatly differ from these papers (and skimming through the paper abstracts, you can see that they are themselves on a range of topics), and (2) your final reports don't need to be this polished (these are not the final reports that the students submitted at the end of the course but papers that were finished later on from the projects started in the course or even started before the course but just continued during the course).