Collaborative homework session
Mondays 5-6pm in 243 Altgeld Hall
Come and work together on the homework!

Policies

1. Students may work together on the homework problems. But you must write up your own solutions, in your own words. Submission of identical solutions will constitute grounds for an academic integrity investigation.

2. Homework scores will depend on clarity of presentation as well as correctness of the mathematics. Use words and sentences to explain your reasoning.

3. Late homework will be accepted only if you received an extension from the professor in advance, by email. Exceptions can be made in cases of medical or family emergency where advance notice is impractical.

4. Homework assignments must be stapled in the top left corner, with your name written in the top right corner. Otherwise your homework will not be graded.

5. On the first page of your homework, write the names of all people with whom you discussed the problems. This is an ethical matter: "give credit where credit is due". This information will not affect the grading.

Assignments

Homework 11 - due Thursday December 1 at the beginning of class. Collaborative homework session Monday 5-6pm in 243 Altgeld Hall.
Homework 10 - due Thursday November 17 at the beginning of class.
Homework 9 - due Thursday November 3 at the beginning of class.
Homework 8 - due Thursday October 27 at the beginning of class.
Homework 7 - due Thursday October 20 at the beginning of class.
Homework 6 - due Thursday October 13 at the beginning of class.
Homework 5 - due Thursday October 6 at the beginning of class.
Homework 4 - due Thursday September 22 at the beginning of class.
Homework 3 - due Thursday September 15 at the beginning of class.

For the problem on Hausdorff measure, you may use facts such as Lemma 4.4 from the online notes (not covered in class). Also useful is that if $X=\mathbb{R}$ and $s=1$ then Hausdorff measure equals Lebesgue measure.

Homework 2 - due Thursday September 8 at the beginning of class.

Some students asked about Problem 2 ([Bass], Exercise 4.5), specifically, the interpretation of $|c|m(A)$ in the case when A has infinite measure and $c=0$. You may wish to review [Folland] Sec. 0.5 on the Extended Real Numbers. The following discussion on Math StackExchange

http://math.stackexchange.com/questions/234216/the-interpretation-of-0-cdot-infty

may also help to clarify this point.

Homework 1 - due Thursday September 1 at the beginning of class.

Homework 0 - due Friday August 26 by 3pm, to Professor Tyson's office (329 Altgeld Hall)

Resources: [Folland] Section 0.5